Numerical Methods in Continuum Mechanics II

Tutorial 2

October 25, 2007
4.

The faces of this tetraeder are named F_{x} (to which the x-axis is normal), F_{y} (to which the y-axis is normal), F_{z} (to which the z-axis is normal), and F (to which $\vec{n}=\left(n_{x}, n_{y}, n_{z}\right)^{T}$ with $\|\vec{n}\|=1$ is normal). Show, that the areas of the faces satisfy $\left|F_{i}\right|=n_{i}|F|$ for all $i \in\{x, y, z\}$.
5. Last part of Cauchy's theorem: Let Ω be a bounded domain, $f: \Omega \rightarrow \mathbb{R}^{3}$ a given bodyforce, and $t(x, n)$ be Cauchy's stress vector acting at the material point x with respect to the cut surface regarding the normal direction n. Let t be such, that for all subsets $A \subset \Omega$ there holds

$$
\int_{A} x \times f(x) \mathrm{d} x+\int_{\partial A} x \times t(x, n) \mathrm{d} s=0
$$

Assume that there exists a mapping $\sigma: \Omega \rightarrow \mathbb{R}^{3 \times 3}$, such that $t(x, n)=\sigma(x) n$ and $-\operatorname{div} \sigma(x)=f(x)$ hold for all $x \in \Omega$. Show, that $\sigma(x)=\sigma(x)^{T}$ for all $x \in \Omega$.
6. Let A, B be square matrices. The Frobenius scalar product and norm are defined

$$
\langle A, B\rangle_{F}:=\sum_{i j} a_{i j} b_{i j}, \quad \quad\|A\|_{F}:=\langle A, A\rangle_{F}^{1 / 2}
$$

Moreover, we define the trace of A by $\operatorname{tr} A:=\langle A, I\rangle_{F}$ and the deviator of A by $\operatorname{dev} A:=A-\frac{\operatorname{tr} A}{\operatorname{tr} I} I$, where I denotes the identity matrix. Verify both identities

$$
\operatorname{tr}\left(Q A Q^{T}\right)=\operatorname{tr} A, \quad\left\|\operatorname{dev}\left(Q A Q^{T}\right)\right\|_{F}=\|\operatorname{dev} A\|_{F}
$$

where Q is an orthogonal matrix, i. e., $Q^{T} Q=I$.
7. Let $\sigma \in \mathbb{R}^{3 \times 3}$ be symmetric with eigenvalues $\sigma_{1}, \sigma_{2}, \sigma_{3} \in \mathbb{R}$. By using the definitions and results(!) of Example 6, show that there holds

$$
\sqrt{\frac{3}{2}}\|\operatorname{dev} \sigma\|_{F}=\sqrt{\frac{\left(\sigma_{2}-\sigma_{3}\right)^{2}+\left(\sigma_{3}-\sigma_{1}\right)^{2}+\left(\sigma_{1}-\sigma_{2}\right)^{2}}{2}}
$$

