Numerical Methods in Continuum Mechanics II

Tutorial 4

November 15, 2007
11. Mesh refinement - round corners: Download and extract the file wrench.zip from WWw.sfb013.uni-linz.ac.at/~peter/. This will create the directory wrench with the files readme.txt, elements.mat, nodes.mat, surface.mat, and spline2.mat. Take a look at readme.txt. Then, extend the Matlab function of Example 9 by the facility of creating round corners during the mesh refinement. Therefore, follow the instructions in Figure 1
12. Show, that after infinitely many refinement steps, the strategy outlined in Figure 1 would produce the unique quadratic polynomial p which passes through A and C , and whose slope equals $\overrightarrow{A B}$ in A, and $\overrightarrow{B C}$ in C.
13. Assume the vector representation of the stress σ and the strain ε by

$$
\vec{\sigma}=\left(\begin{array}{c}
\sigma_{11} \\
\sigma_{22} \\
\sigma_{33} \\
\sigma_{12} \\
\sigma_{23} \\
\sigma_{31}
\end{array}\right), \quad \vec{\varepsilon}=\left(\begin{array}{c}
\varepsilon_{11} \\
\varepsilon_{22} \\
\varepsilon_{33} \\
2 \varepsilon_{12} \\
2 \varepsilon_{23} \\
2 \varepsilon_{31}
\end{array}\right)
$$

Show, that $\vec{\sigma}=C \vec{\varepsilon}$ represents Hooke's law $\sigma=2 \mu \varepsilon+\lambda \operatorname{tr} \varepsilon I$ (where $\lambda>0$ and $\mu>0$), if

$$
C=\left(\begin{array}{cccccc}
\lambda+2 \mu & \lambda & \lambda & 0 & 0 & 0 \\
\lambda & \lambda+2 \mu & \lambda & 0 & 0 & 0 \\
\lambda & \lambda & \lambda+2 \mu & 0 & 0 & 0 \\
0 & 0 & 0 & \mu & 0 & 0 \\
0 & 0 & 0 & 0 & \mu & 0 \\
0 & 0 & 0 & 0 & 0 & \mu
\end{array}\right)
$$

Show, that C is positive definite, and calculate its condition number $\kappa=\frac{\lambda_{\max }}{\lambda_{\min }}$, and its inverse.

Figure 1: In the left picture you can see two segments $\overrightarrow{A B}$ and $\overrightarrow{B C}$ which we assume to be edges of two different triangles. If one does usual mesh refinement, the segments would be bisected (see D and E in the right picture) as the related triangles are split into quarters - nothing more. If one would like to obtain a round courner between A and C, this can be obtained by additionally shifting the vertex B to a new position B^{\prime} in the middle between D and E. Recursively, in the next refinement step one would apply the same strategy seperately for both double segments $A D B^{\prime}$ and $B^{\prime} E C$, as was done for the double segment $A B C$ before.

