Numerical Methods in Continuum Mechanics II

Tutorial 5

November 22, 2007

14. Let Ω be a bounded domain and $u \in C^1(\Omega)$. Show, that the derivative Du of u serves as a weak derivative, and that for each arbitrary weak derivative u' of u there holds

$$\int_{\Omega} (u' - \mathrm{D}u) \varphi \,\mathrm{d}x = 0 \quad \text{for all } \varphi \in C_0^{\infty}(\Omega).$$

That is, u' coincides with Du almost everywhere on Ω in the Lebesgue sense.

15. We define a function $u:]-1, 1[\to \mathbb{R}$ by

$$u(x) = \begin{cases} u^{-}(x), & \text{if } x \in \left]-1, 0\right[, \\ \lim_{y \to 0} u^{-}(y), & \text{if } x = 0, \\ u^{+}(x), & \text{if } x \in \left]0, 1\right[, \end{cases}$$

with $u^- \in C^1(]-1, 0[)$ and $u^+ \in C^1(]0, 1[)$ such that $\lim_{x\to 0} u^-(x) = \lim_{x\to 0} u^+(x)$. Is u weakly differentiable? If yes, then how many times is u weakly differentiable?

16. Consider the classical formulation of the Poisson problem: Find u such that for given f there holds

$$-\Delta u = f \text{ on } \Omega, \qquad \qquad u = 0 \text{ on } \partial\Omega,$$

where $\Delta u := \sum_i \frac{\partial^2 u}{\partial x_i^2}$. What are the minimal space requirements for u and f, such that this problem is well defined?

Consider the related variational formulation: Find u such that

$$\int_{\Omega} \nabla u^T \nabla v \, \mathrm{d}x = \int_{\Omega} f v \mathrm{d}x \qquad \text{for all } v$$

Again, what minimal space requirements for u, v and f do we have, such that this problem is well defined? Derive the variational formulation from the classical formulation and also do the other way round.

17. Differently as in Example 16 the boundary $\partial \Omega$ is split into two parts Γ_D and Γ_N (named after *Dirichlet* and *Neumann*). Now consider again the classical formulation of the Poisson problem: Find u such that for given f and g there holds

$$-\Delta u = f \text{ on } \Omega, \qquad u = 0 \text{ on } \Gamma_D, \qquad \partial_n u = g \text{ on } \Gamma_N,$$

where $\partial_n u := \nabla u^T n$ denotes the normal derivative. What does the related variational formulation look like?

Short survey on weak derivatives and Sobolev spaces Let Ω be a bounded domain. $C_0^{\infty}(\Omega)$ denotes the set of all C^{∞} functions with compact support on Ω , i. e., there exists an open neighborhood of $\partial\Omega$ on which these functions are identically 0. Similarly, one can define such function space also for a subset $\Gamma \subset \partial\Omega$ instead of the whole boundary $\partial\Omega$: The function space $C_{\Gamma}^{\infty}(\Omega)$ is the set of all functions which vanish in an open neighborhood around Γ .

Definition 1. A function $u \in L_p(\Omega)$ is said to be *weakly differentiable in* $L_p(\Omega)$ if there exists a function $u' \in L_p(\Omega)$ such that for all $\varphi \in C_0^{\infty}(\Omega)$ the identity

$$\int_{\Omega} u' \varphi \, \mathrm{d}x = -\int_{\Omega} u \, \mathrm{D}\varphi \, \mathrm{d}x$$

holds true. Such function u' is then called a *weak derivative* of u.

Definition 2. A function $u \in L_p(\Omega)$ is said to be k times weakly differentiable in $L_p(\Omega)$ if for every multi-indicex α with $|\alpha| \leq k$ there exists a function $u^{(\alpha)} \in L_p(\Omega)$ such that for all $\varphi \in C_0^{\infty}(\Omega)$ the identity

$$\int_{\Omega} u^{(\alpha)} \varphi \, \mathrm{d}x = (-1)^{|\alpha|} \int_{\Omega} u \, \mathrm{D}_{\alpha} \varphi \, \mathrm{d}x$$

holds true.

Definition 2 motivates the definition of Sobolev spaces and norms

$$\begin{split} W^{p,k}(\Omega) &:= \{ v \in L_p(\Omega) \mid v \text{ is } k \text{ times weakly differentiable in } L_p(\Omega) \}, \\ W_0^{p,k}(\Omega) &:= \{ v \in W^{p,k}(\Omega) \mid \exists (v_n) \in C_0^{\infty}(\Omega) : \lim_{n \to \infty} \|v - v_n\|_{W^{p,k}(\Omega)} = 0 \}, \\ W_{\Gamma}^{p,k}(\Omega) &:= \{ v \in W^{p,k}(\Omega) \mid \exists (v_n) \in C_{\Gamma}^{\infty}(\Omega) : \lim_{n \to \infty} \|v - v_n\|_{W^{p,k}(\Omega)} = 0 \}, \\ \|v\|_{W^{p,k}(\Omega)} &:= \left(\sum_{|\alpha| \le k} \|v^{(\alpha)}\|_{L_p(\Omega)}^p \right)^{\frac{1}{p}}, \qquad |v|_{W^{p,k}(\Omega)} := \left(\sum_{|\alpha| = k} \|v^{(\alpha)}\|_{L_p(\Omega)}^p \right)^{\frac{1}{p}}, \\ H^k(\Omega) &:= W^{2,k}(\Omega), \qquad H_0^k(\Omega) := W_0^{2,k}(\Omega), \qquad H_{\Gamma}^k(\Omega) := W_{\Gamma}^{2,k}(\Omega) \end{split}$$

$$\|v\|_k := \|v\|_{W^{2,k}(\Omega)}, \qquad |v|_k := |v|_{W^{2,k}(\Omega)}.$$

Notice, that there holds $W^{p,0}(\Omega) = W_0^{p,0}(\Omega) = L_p(\Omega)$, and that $H^k(\Omega)$, $H_0^k(\Omega)$ and $H_{\Gamma}^k(\Omega)$ are Hilbert spaces. Moreover, the quantity $|\cdot|_k$ is not a norm but a semi norm, which means that the implication $(|v|_k = 0) \Rightarrow (v = 0)$ is not valid.