Numerical Methods in Continuum Mechanics II

Tutorial 6

November 29, 2007

Definition 1. On a vector space V, two norms $\|\cdot\|_1$ and $\|\cdot\|_2$ are said to be equivalent if there exist positive constants \underline{c} , $\overline{c} \in \mathbb{R}$ such that for all $v \in V$ there holds

$$\underline{c} \|v\|_1 \le \|v\|_2 \le \overline{c} \|v\|_1.$$

Definition 2. Let V be a vector space. A mapping $f: V \to [0, +\infty[$ is said to be a semi norm if it satisfies

- 1. $f(\lambda v) = |\lambda| f(v)$, $\forall \lambda \in \mathbb{R}$, $\forall v \in V$,
- 2. $f(v+w) \le f(v) + f(w)$, $\forall v, w \in V$.

Theorem 1 (Sobolev's Theorem of Norm Equivalences). Let $\Omega \subset \mathbb{R}^n$ with $n \in \mathbb{N}$ be a bounded domain, let $l \in \mathbb{N}$, $k \in \mathbb{N}$ and $p \in [1, +\infty[$ be fixed arbitrarily, let for all $i \in \{1, 2, \ldots, l\}$ the mapping $f_i : W^{p,k}(\Omega) \to [0, +\infty[$ be a semi norm for which there exists a positive constant c_i such that $f_i(v) \leq c_i ||v||_{W^{p,k}(\Omega)}$ holds for all $v \in W^{p,k}(\Omega)$, and let $\mathcal{P}_{k-1}(\mathbb{R}^n)$ denote the set of all polynomials of at most k-1st order defined on \mathbb{R}^n .

If for all $v \in \mathcal{P}_{k-1}(\mathbb{R}^n)$ and $i \in \{1, 2, ..., l\}$ the implication $[f_i(v) = 0] \Rightarrow [v \equiv 0]$ is satisfied, then the norms $\|\cdot\|_{W^{p,k}(\Omega)}$ and $\|\cdot\|_{((f_i),p,k,\Omega)} := \left(\sum_{i=1}^l f_i(\cdot)^p + |\cdot|_{W^{p,k}(\Omega)}^p\right)^{1/p}$ are equivalent.

Examples:

- 18. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain, and let $\Gamma \subset \partial \Omega$ be of non-negative measure. Use Sobolev's Theorem of Norm Equivalences to show
 - (a) Friedrichs' inequality: $\exists C_F \in [0, +\infty) \mid \forall v \in H_0^1(\Omega) : ||v||_0 \leq C_F |v|_1$,
 - (b) Friedrichs type inequality: $\exists C \in [0, +\infty[\forall v \in H^1_{\Gamma}(\Omega) : ||v||_0 \leq C|v|_1,$
 - (c) Poincarè's inequality: $\exists C_P \in]0, +\infty[\forall v \in H^1(\Omega) : ||v v_{\Omega}||_0 \le C_P |v|_1,$

where
$$v_{\Omega} := \frac{1}{|\Omega|} \int_{\Omega} v \, \mathrm{d}x$$
.

- 19. Consider the problems of Example 16 and 17 with $f \in L_2(\Omega)$ and $g \in L_2(\Gamma_N)$. Show, that each of the two variational formulations is uniquely solveable in $H_0^1(\Omega)$ and $H_{\Gamma_D}^1(\Omega)$, respectively.
- 20. Consider the classical formulation of the problem: Find u such that for given f and g there holds

$$-\Delta u = f \text{ on } \Omega$$
, $\partial_n u = g \text{ on } \partial \Omega$.

Derive the related variational formulation, and show again, that for $f \in L_2(\Omega)$ and $g \in L_2(\partial\Omega)$, the variational formulation has a unique solution u amongst functions $v \in H^1(\Omega)$ which satisfy $\int_{\Omega} v \, dx = 0$.