Numerical Methods in Continuum Mechanics II

Tutorial 6

November 29, 2007

Definition 1. On a vector space V, two norms $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ are said to be equivalent if there exist positive constants $\underline{c}, \bar{c} \in \mathbb{R}$ such that for all $v \in V$ there holds

$$
\underline{c}\|v\|_{1} \leq\|v\|_{2} \leq \bar{c}\|v\|_{1} .
$$

Definition 2. Let V be a vector space. A mapping $f: V \rightarrow[0,+\infty[$ is said to be a semi norm if it satisfies

1. $f(\lambda v)=|\lambda| f(v), \quad \forall \lambda \in \mathbb{R}, \forall v \in V$,
2. $f(v+w) \leq f(v)+f(w), \quad \forall v, w \in V$.

Theorem 1 (Sobolev's Theorem of Norm Equivalences). Let $\Omega \subset \mathbb{R}^{n}$ with $n \in \mathbb{N}$ be a bounded domain, let $l \in \mathbb{N}, k \in \mathbb{N}$ and $p \in[1,+\infty[$ be fixed arbitrarily, let for all $i \in\{1,2, \ldots, l\}$ the mapping $f_{i}: W^{p, k}(\Omega) \rightarrow[0,+\infty[$ be a semi norm for which there exists a positive constant c_{i} such that $f_{i}(v) \leq c_{i}\|v\|_{W^{p, k}(\Omega)}$ holds for all $v \in W^{p, k}(\Omega)$, and let $\mathcal{P}_{k-1}\left(\mathbb{R}^{n}\right)$ denote the set of all polynomials of at most $k-1$ st order defined on \mathbb{R}^{n}.

If for all $v \in \mathcal{P}_{k-1}\left(\mathbb{R}^{n}\right)$ and $i \in\{1,2, \ldots, l\}$ the implication $\left[f_{i}(v)=0\right] \Rightarrow[v \equiv 0]$ is satisfied, then the norms $\|\cdot\|_{W^{p, k}(\Omega)}$ and $\|\cdot\|_{\left(\left(f_{i}\right), p, k, \Omega\right)}:=\left(\sum_{i=1}^{l} f_{i}(\cdot)^{p}+|\cdot|_{W^{p, k}(\Omega)}^{p}\right)^{1 / p}$ are equivalent.

Examples:
18. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain, and let $\Gamma \subset \partial \Omega$ be of non-negative measure. Use Sobolev's Theorem of Norm Equivalences to show
(a) Friedrichs' inequality: $\left.\exists C_{F} \in\right] 0,+\infty\left[\forall v \in H_{0}^{1}(\Omega):\|v\|_{0} \leq C_{F}|v|_{1}\right.$,
(b) Friedrichs type inequality: $\exists C \in] 0,+\infty\left[\forall v \in H_{\Gamma}^{1}(\Omega):\|v\|_{0} \leq C|v|_{1}\right.$,
(c) Poincarè's inequality: $\left.\exists C_{P} \in\right] 0,+\infty\left[\forall v \in H^{1}(\Omega):\left\|v-v_{\Omega}\right\|_{0} \leq C_{P}|v|_{1}\right.$,
where $v_{\Omega}:=\frac{1}{|\Omega|} \int_{\Omega} v \mathrm{~d} x$.
19. Consider the problems of Example 16 and 17 with $f \in L_{2}(\Omega)$ and $g \in L_{2}\left(\Gamma_{N}\right)$. Show, that each of the two variational formulations is uniquely solveable in $H_{0}^{1}(\Omega)$ and $H_{\Gamma_{D}}^{1}(\Omega)$, respectively.
20. Consider the classical formulation of the problem: Find u such that for given f and g there holds

$$
-\Delta u=f \text { on } \Omega, \quad \partial_{n} u=g \text { on } \partial \Omega .
$$

Derive the related variational formulation, and show again, that for $f \in L_{2}(\Omega)$ and $g \in L_{2}(\partial \Omega)$, the variational formulation has a unique solution u amongst functions $v \in H^{1}(\Omega)$ which satisfy $\int_{\Omega} v \mathrm{~d} x=0$.

