Numerical Methods in Continuum Mechanics II

Tutorial 7

December 6, 2007

Galerkin scheme Let V be a infinite dimensional vectorspace, e.g., $H^{1}(\Omega)$, and let $n \in \mathbb{N}$ be fixed arbitarily. The problem is to find $u \in V$ such that $a(u, v)=\langle F, v\rangle$ holds for all $v \in V$. To use the Galerkin scheme means to solve the problem not in V but in an n-dimensional subspace V_{h}. We identify V_{h} by a basis $\left\{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}\right\}$ and solve: Find $u_{h}:=\sum_{i=1}^{n} u_{i} \varphi_{i} \in V_{h}$ such that for all $v_{h}:=\sum_{i=1}^{n} v_{i} \varphi_{i} \in V_{h}$ with u_{i} and v_{i} in \mathbb{R} for all i there holds $a\left(u_{h}, v_{h}\right)=\left\langle F, v_{h}\right\rangle$. Such problem can be rewritten as: Find $\underline{u}_{h} \in \mathbb{R}^{n}$ such that for all $\underline{v}_{h} \in \mathbb{R}^{n}$ there holds

$$
\begin{equation*}
\underline{v}_{h}^{T} K_{h} \underline{u}_{h}=\underline{v}_{h}^{T} \underline{f}_{h} \tag{1}
\end{equation*}
$$

with

$$
\underline{u}_{h}:=\left(u_{i}\right)_{i=1}^{n}, \quad \underline{v}_{h}:=\left(v_{i}\right)_{i=1}^{n}, \quad K_{h}:=\left(a\left(\varphi_{j}, \varphi_{i}\right)\right)_{i, j=1}^{n}, \quad \underline{f}_{h}:=\left(\left\langle F, \varphi_{i}\right\rangle\right)_{i=1}^{n} .
$$

Since (II) must hold for all $\underline{v}_{h} \in \mathbb{R}^{n}$ it suffices to solve $K_{h} \underline{u}_{h}=\underline{f}_{h}$.
21. Generate the Finite Element system for the mixed boundary value problem

$$
\begin{align*}
-\Delta u\left(x_{1}, x_{2}\right) & \left.=0 \quad \forall\left(x_{1}, x_{2}\right) \in \Omega:=\right] 0,1[\times] 0,1[\tag{2}\\
u\left(x_{1}, 0\right) & =0 \quad \forall x_{1} \in[0,1] \tag{3}\\
u\left(0, x_{2}\right) & =0 \quad \forall x_{2} \in[0,1] \tag{4}\\
\frac{\partial}{\partial x_{1}} u\left(1, x_{2}\right) & \left.\left.=x_{2} \quad \forall x_{2} \in\right] 0,1\right] \tag{5}\\
\frac{\partial}{\partial x_{2}} u\left(x_{1}, 1\right) & \left.=x_{1} \quad \forall x_{1} \in\right] 0,1[\tag{6}
\end{align*}
$$

under use of the triangulation in Figure $V_{h}=\left\{\varphi_{1}\left(x_{1}, x_{2}\right), \varphi_{2}\left(x_{1}, x_{2}\right), \ldots, \varphi_{9}\left(x_{1}, x_{2}\right)\right\}$ such that $\varphi_{i}\left(x_{1}, x_{2}\right)$ is linear on each triangle and there holds $\varphi_{i}\left(\mathbf{v}_{j}\right)=\delta_{i j}$ on the node \mathbf{v}_{j} for all i and j. Solve the linear FE-system.

Figure 1: $\Omega=] 0,1[\times] 0,1[$.
22. Solve the variational problem: Find $u \in V:=L_{2}(0,1)$ such that

$$
\int_{0}^{1} u(x) v(x) \mathrm{d} x=\int_{0}^{1} f(x) v(x) \mathrm{d} x \quad \forall v \in V
$$

with the Galerkin scheme by using the monomial basis

$$
V_{h}=\operatorname{span}\left\{1, x, x^{2}, x^{3}, \ldots, x^{n-1}\right\}
$$

Calculate the stiffness matrix K_{h} analytically and solve the linear system $K_{h} \underline{u}_{h}=\underline{f}_{h}$ numerically by using the Gaussian algorithm in Matlab (in order to solve the system $A x=b$, one would use the commands: $[\mathrm{L}, \mathrm{U}]=\mathrm{lu}(\mathrm{A}) ; \mathrm{x}=\mathrm{U} \backslash(\mathrm{L} \backslash \mathrm{b}) ;$). Therefore, let $f(x):=\cos ((k+1) \pi x)$ with k denoting the last digit of your students id. Vary $n \in\{2,4,8,10,50,100\}$.
23. Show that the integration formula

$$
\int_{\Delta} f\left(x_{1}, x_{2}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2} \approx \frac{1}{2} f\left(x_{1}^{*}, x_{2}^{*}\right)
$$

with $\Delta=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid 0<x_{2}<1-x_{1}, 0<x_{1}<1\right\}$ and $x_{1}^{*}=x_{2}^{*}=1 / 3$ is exact if and only if f is in $\mathcal{P}_{1}(\Delta)$, i. e., a linear polynomial.
24. Show that the integration formula

$$
\int_{\Delta} f(\xi, \eta) \mathrm{d} \xi \mathrm{~d} \eta \approx \frac{1}{2}\left(\alpha_{1} f\left(\xi_{1}, \eta_{1}\right)+\alpha_{2} f\left(\xi_{2}, \eta_{2}\right)+\alpha_{3} f\left(\xi_{3}, \eta_{3}\right)\right)
$$

with $\Delta=\left\{(\xi, \eta) \in \mathbb{R}^{2} \mid 0<\eta<1-\xi, 0<\xi<1\right\}$ and
(a) $\alpha_{1}=\alpha_{2}=\alpha_{3}=1 / 3,\left(\xi_{1}, \eta_{1}\right)=(1 / 2,0),\left(\xi_{2}, \eta_{2}\right)=(1 / 2,1 / 2),\left(\xi_{3}, \eta_{3}\right)=$ $(0,1 / 2)$,
(b) $\alpha_{1}=\alpha_{2}=\alpha_{3}=1 / 3,\left(\xi_{1}, \eta_{1}\right)=(1 / 6,1 / 6),\left(\xi_{2}, \eta_{2}\right)=(4 / 6,1 / 6),\left(\xi_{3}, \eta_{3}\right)=$ (1/6, 4/6),
is exact if and only if f is in $\mathcal{P}_{2}(\Delta)$, i. e., a quadratic polynomial.

