Numerical Methods in Continuum Mechanics II

Tutorial 9

January 17, 2008
29. Let V denote a function space and $V_{D} \subset V$ its subset (hyper plane) of functions which satisfy the Dirichlet condition $v=u_{D}$ on Γ_{D}. Let $a(\cdot, \cdot)$ be a bilinear form, $\langle F, \cdot\rangle$ a linear form, $\psi: V_{D} \rightarrow \mathbb{R}$ a convex function, and $J(v):=\frac{1}{2} a(v, v)+\psi(v)-\langle F, v\rangle$. Show that $u \in V_{D}$ solves the variational inequality

$$
a(u, u-v)+\psi(u)-\psi(v) \leq\langle F, u-v\rangle \quad \forall v \in V_{D},
$$

if and only if it satisfies

$$
J(u)=\inf _{v \in V_{D}} J(v)
$$

30. When modeling elastoplasticity with the kinematic hardening scheme (cf. lectures) the bilinearform of the variational inequality reads

$$
a((u, p),(v, q))=\int_{\Omega} \mathbb{C}(\varepsilon(u)-p):(\varepsilon(v)-q)+\mathbb{H} p: q \mathrm{~d} x .
$$

Here, \mathbb{C} is the elastic stiffness tensor (Hooke's law), and \mathbb{H} is a positive definite tensor of the same size and dimension as \mathbb{C}. Show that there exists $\alpha>0$ such that $a((v, q),(v, q)) \geq \alpha\left(\|v\|_{H^{1}}^{2}+\|q\|_{L_{2}}^{2}\right)$ holds for all $(v, q) \in\left[H_{0}^{1}(\Omega)\right]^{3} \times\left[L_{2}(\Omega)\right]_{\text {sym }}^{3 \times 3}$.
31. Let $A \in \mathbb{R}^{3 \times 3}$ with $\operatorname{tr} A=0$ and $b \in \mathbb{R}$ with $b>0$. Find Q with $\operatorname{tr} Q=0$ such that

$$
J(Q):=\frac{1}{2} Q: Q-A: Q+b\|Q\|_{F}
$$

attains its minimum.

