# Numerical Methods in Continuum Mechanics II 

Tutorial 10

January 31, 2008
32. Let $A \in \mathbb{R}^{3 \times 3}$ and $\xi, b \in \mathbb{R}$ with $b>0$ and $\xi>0$. Find $Q$ with $\operatorname{tr} Q=0$ such that

$$
J(Q):=\frac{\xi}{2} Q: Q-A: Q+b\|Q\|_{F}
$$

attains its minimum. Hint: $\operatorname{dev} A$ is trace free.
33. Let $t_{k}$ with $k \in \mathbb{N}$ denote the $k$-th time step, $V_{D}:=\left\{v \in\left[H^{1}(\Omega)\right]^{3} \mid v=u_{D}\right.$ on $\left.\Gamma_{D}\right\}$, and $S:=\left\{q \in\left[L_{2}(\Omega)\right]_{\text {sym }}^{3 \times 3} \mid \operatorname{tr} q=0\right\}$. Write down the minimization problem $J_{k}\left(u_{k}, p_{k}\right) \rightarrow \min$ in detail for elastoplasticity with kinematic hardening (with the elastic stiffness tensor $\mathbb{C}$ for which there holds $\mathbb{C} x=2 \mu x+\lambda \operatorname{tr} x I$ and the hardening tensor $\mathbb{H}$ which we choose to be such that $\mathbb{H} x=h x$ with $h \in(0,+\infty)$, see the lectures). Show that, for fixed $\bar{u}_{k} \in V_{D}$, the minimizer $p_{k} \in S$, for which there holds $J_{k}\left(\bar{u}_{k}, p_{k}\right) \leq J_{k}\left(\bar{u}_{k}, q\right)$ for all $q \in S$, can be found via the minimization problem in Example 32. What are $\xi, A$ and $b$ then, and what does the minimizer $p_{k}$ then look like in dependency of $\bar{u}_{k}$ ?
34. Let $t_{k}$ with $k \in \mathbb{N}$ denote the $k$-th time step, $V_{D}:=\left\{v \in\left[H^{1}(\Omega)\right]^{3} \mid v=u_{D}\right.$ on $\left.\Gamma_{D}\right\}$, and $S:=\left\{q \in\left[L_{2}(\Omega)\right]_{\text {sym }}^{3 \times 3} \mid \operatorname{tr} q=0\right\}$. Show that, for fixed $\bar{p}_{k} \in S$, the minimizer $u_{k} \in V_{D}$, for which there holds $J_{k}\left(u_{k}, \bar{p}_{k}\right) \leq J_{k}\left(v, \bar{p}_{k}\right)$ for all $v \in V_{D}$, can be found via a linear system.

