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Abstract

In this paper we consider a (one-shot) multigrid strategy for solving the discretized
optimality system (KKT system) of a PDE-constrained optimization problem. In
particular, we discuss the construction of an additive Schwarz-type smoother for a
certain class of optimal control problems. A rigorous multigrid convergence analysis
is presented. Numerical experiments are shown which confirm the theoretical results.

1 Introduction

In this paper we discuss multigrid methods for solving large-scale systems of discretized
mixed variational problems. The main applications considered here are optimization prob-
lems in function spaces with constraints in form of partial differential equations (PDEs).
The necessary (and for the problems considered here also sufficient) first-order optimality
conditions on a solution of such a problem can be written as a mixed variational problem,
usually called the optimality system or Karush-Kuhn-Tucker (KKT) system.

In particular, we will consider elliptic optimal control problems, see, e.g., [13], [17]. In
such problems the primal unknown, say x, consists of two parts: a function y, the so-called
state, and a function u, the so-called control. The problem is to find x = (y, u) from appro-
priate function spaces that minimizes a given cost functional subject to a constraint, the
so-called state equation, which, for each control u, is an elliptic boundary value problem in
y. The corresponding KKT system involves another (dual) unknown, say p (the Lagrangian
multiplier or the adjoint state), and consists of three components: the state equation (see
above), the adjoint state equation, which, for each state y, is an elliptic boundary value
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problem in p, and the control equation, which is typically an algebraic relation between u
and p.

In principle, there are two different approaches for mixed problems, such as KKT
systems, to take advantage of the multigrid idea. One way is to use an outer iteration,
typically a preconditioned Richardson method (possibly accelerated by a Krylov subspace
method), applied to the discretized mixed problem. For typical preconditioners of KKT
systems in elliptic optimal control, see, e.g., [2], [3], [4], [12] and the references cited
there. These preconditioners usually rely on efficient solvers or preconditioners for the
state equation (as a PDE in y) and the adjoint state equation (as a PDE in p) and on
the construction of a good preconditioner for the corresponding Schur complement of the
KKT system, which is the reduced Hessian of the Lagrangian. A preconditioner based on a
different Schur complement is proposed in [15]. Multigrid techniques (as an inner iteration
or approximation) can be used for (some or all of) these components, see, e.g., [10], [9],
[15].

The other way is to use multigrid methods directly applied to the (discretized) mixed
problem as an outer iteration based on appropriate smoothers (as a sort of inner iteration).
For PDE-constrained optimization problems this approach is also known as one-shot multi-
grid strategy, see [16]. One of the most important ingredients of such a multigrid method
is an appropriate smoother.

A first approach for constructing such smoothers is to combine standard smoothers
applied to the components elliptic state and adjoint equations complemented with a special
relaxation method for the control equation, see, e.g., [1].

A second class of smoothers are point smoothers, where the variable, here y, u and p,
are grouped pointwise (with respect to the points (nodes) of the underlying mesh) and one
or several sweeps of point-block Jacobi or point-block Gauß-Seidel sweeps with respect to
this grouping are performed, see, e.g, [5].

A natural extension of point smoothers are patch smoothers: The computational do-
main is divided into small (overlapping or non-overlapping) patches. One iteration step
of the smoothing process consists of solving local mixed problems on each patch one-by-
one either in a Jacobi-type or Gauss-Seidel-type manner. This results in an additive or
multiplicative Schwarz-type smoother. The technique was successfully used for the Navier-
Stokes equations, see [18]. The general construction and the analysis of patch smoothers
for mixed problems was discussed in [14], where a particular patch smoother was proposed
for the Stokes problem. An essential feature exploited in the multigrid convergence analy-
sis of the Stokes problem was (in the terminology introduced here) that the adjoint state
equation is an elliptic problem in y, where in elliptic optimal control problems the adjoint
state equation is typically elliptic in p but not necessarily in y. Therefore, a straight for-
ward application of this construction to KKT systems for elliptic optimal control problems
fails.

Another well-known class of smoothers for mixed problems are Braess-Sarazin smooth-
ers, see, [6], [21], which are well suited for Stokes-like problems but are too expensive if
applied to KKT systems of elliptic optimal control problems.

A last approach discussed here for constructing smoothers for mixed problems leads to
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so-called transforming smoothers, see [19], [20], which were successfully analyzed for the
Stokes problem and the Navier-Stokes problem. They still lack a rigorous analysis for more
general mixed problems like the KKT systems of elliptic optimal control problems.

So far, the multigrid convergence analysis for KKT systems of PDE-constrained opti-
mization problems is not as developed as for elliptic PDEs. One line of argument exploits
the fact that the KKT system reduced to y and p by eliminating u using the control equa-
tion is a compact perturbation of an elliptic problem. This guarantees the convergence
of the multigrid method if the coarse grid is sufficiently fine, see [5]. A second strategy
is based on a Fourier analysis, which, strictly speaking, covers only the case of uniform
meshes with special boundary conditions (and small perturbations of this situation), see,
e.g., [5], [1].

The aim of this paper is to contribute to the one-shot multigrid approach for KKT
systems. We will modify the construction of the patch smoother discussed in [14] for KKT
systems of elliptic optimal control problems and present a rigorous convergence analysis of
the corresponding multigrid method.

In order to keep the notations simple and the strategy transparent the material is
presented for a model problem in optimal control only. However, since the construction of
the method does not rely on structural information of some Schur complement, the method
is easily applicable to more general problems.

The paper is organized as follows: In Section 2 the class of problems, the multigrid
method and the Schwarz-type smoother are introduced. Section 3 contains the roadmap
to prove the multigrid convergence in an abstract setting. The main part of the paper is
the application to PDE-constrained optimization problems in Section 4, the proof of the
approximation property in Section 5, and the proof of the smoothing property in Section 6,
which completes the multigrid convergence analysis. Finally, in Section 7 some numerical
results are presented, followed by some concluding remarks on the extension to more general
mixed problems.

2 The framework

Here we follow mainly the notations introduced in [7] and [14] and give a short review of
the general results on Schwarz-type smoothers from [14]:

Let X and Q be real Hilbert spaces, a : X×X −→ R, b : X×Q −→ R, c : Q×Q −→ R
continuous bilinear forms, and F : X −→ R, G : Q −→ R continuous linear functionals.

We consider the following mixed variational problem: Find x ∈ X and p ∈ Q such that

a(x, w) + b(w, p) = 〈F, w〉 for all w ∈ X,

b(x, q)− c(p, q) = 〈G, q〉 for all q ∈ Q.

Here, 〈F, w〉 (〈G, q〉) denotes the evaluation of the linear functional F (G) at the point w
(q).
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The mixed variational problem can also be written as a variational problem on X ×Q:
Find (x, p) ∈ X ×Q such that

B((x, p), (w, q)) = 〈F , (w, q)〉 for all (w, q) ∈ X ×Q (1)

with the bilinear form

B((x, p), (w, q)) = a(x, w) + b(w, p) + b(x, q)− c(p, q)

and the linear functional
〈F(w, q)〉 = 〈F, w〉+ 〈G, q〉.

It is assumed that a and c are symmetric and non-negative and that B is stable on X ×Q.
Typical examples of this type of problems are the Stokes problem, various problems from

linear elasticity, mixed formulations of boundary value problems for second order elliptic
equations, see e.g. Brezzi, Fortin [8], and, in particular, PDE-constrained optimization
problems, see Section 4.

The Hilbert spaces X and Q are typically subspaces of Sobolev spaces on some domain
Ω. Then, for discretizing the continuous problem (1), a sequence of finite element spaces
Xk and Qk, symmetric bilinear forms Bk and linear functionals Fk on Xk ×Qk are chosen
for each level k = 1, 2, . . ., corresponding to a hierarchy of increasingly finer meshes on Ω.

These spaces, linear and bilinear forms determine discrete problems at each level k:
Find (xk, pk) ∈ Xk ×Qk such that

Bk((xk, pk), (w, q)) = 〈Fk, (w, q)〉 for all (w, q) ∈ Xk ×Qk. (2)

A class of efficient solvers of these discrete problems are multigrid algorithms: We
additionally need coarse-to-fine inter-grid transfer operators Ik

k−1 : Xk−1 ×Qk−1 −→ Xk ×
Qk. Then one iteration step for solving (2) at level k is given in the following form:

Let (x
(0)
k , p

(0)
k ) ∈ Xk × Qk be a given approximation of the exact solution (xk, pk) ∈

Xk ×Qk to (2). Then the iteration proceeds in two stages:

1. Smoothing: For j = 0, 1, . . . ,m− 1 compute (x
(j+1)
k , p

(j+1)
k ) ∈ Vk×Qk by an iterative

procedure of the form
(x

(j+1)
k , p

(j+1)
k ) = Sk (x

(j)
k , p

(j)
k ).

2. Coarse grid correction: Set

〈F̃k−1, (w, q)〉 = 〈Fk, I
k
k−1(w, q)〉 − Bk

(
(x

(m)
k , p

(m)
k ), Ik

k−1(w, q)
)

for (w, q) ∈ Xk−1 ×Qk−1 and let (s̃k−1, r̃k−1) ∈ Vk−1 ×Qk−1 satisfy

Bk−1((s̃k−1, r̃k−1), (v, q)) = 〈F̃k−1, (w, q)〉 for all (w, q) ∈ Xk−1 ×Qk−1. (3)

If k = 1, compute the exact solution of (3) and set (sk−1, rk−1) = (s̃k−1, r̃k−1).

4



If k > 1, compute approximations (sk−1, rk−1) by applying µ ≥ 2 iteration steps of
the multigrid algorithm applied to (3) on level k − 1 with zero starting values.

Set
(x

(m+1)
k , p

(m+1)
k ) = (x

(m)
k , p

(m)
k ) + Ik

k−1(sk−1, rk−1).

Next we will describe the smoothing procedure in detail. For this it will be more
convenient to use matrix-vector notation: Let w ∈ Xk and q ∈ Qk. Then w ∈ Rnk and
q ∈ Rmk denote their vector representations (i.e. the vectors of coefficients relative to some
bases in Xk and Qk). Furthermore, we introduce the matrix representation of the bilinear
forms by

Bk((s, r), (w, q)) = (Aks, w)`2 + (Bkw, r)`2 + (Bks, q)`2 − (Ckr, q)`2 ,

and the vector representation of the linear forms

〈Fk, (w, q)〉 = (f
k
, w)`2 + (g

k
, q)`2 .

Here (., .)`2 denotes the Euclidean scalar product, whose associated vector norm and matrix
norm will both be denoted by ‖.‖`2 .

In matrix-vector notation the discrete problem (2) can be written as:

Kk

(
xk

p
k

)
=

(
f

k

g
k

)
with Kk =

(
Ak BT

k

Bk −Ck

)
.

Here, BT
k denotes the transpose of the matrix Bk. We assume that Ak and Ck are symmetric

positive semi-definite matrices, and that Kk is a nonsingular matrix.
Since the smoothing procedure involves only one level k of the hierarchy of spaces, we

will simplify the notation for the rest of this section by dropping the subscript k and, addi-
tionally, omitting underlining the vectors. So, from now on, we discuss iterative methods
(as smoothers) for linear systems of equations of the form:

K
(

x
p

)
=

(
f
g

)
with K =

(
A BT

B −C

)
, (4)

where x ∈ Rn, p ∈ Rm, under the assumption that A is a symmetric positive semi-definite
n × n matrix, B is an m × n matrix, and C is a symmetric positive semi-definite m ×m
matrix, and that K is nonsingular.

For setting up local sub-problems a set of linear operators is introduced:

Pi : Rni −→ Rn, Qi : Rmi −→ Rm, for i = 1, . . . , N,

where the dimensions ni and mi are typically much smaller than the dimensions n and m of
the original spaces, respectively. The operators Pi and Qi are interpreted as prolongation
operators with associated restriction operators P T

i and QT
i . We assume that

N∑
i=1

QiQ
T
i is nonsingular and

N∑
i=1

PiP
T
i = I, (5)
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where I denotes the identity matrix. These conditions guarantee that we have complete
space decompositions

Rn =
N∑

i=1

Pi(Rni) and Rm =
N∑

i=1

Qi(Rmi),

and that, additionally, the prolongations Pi determine a special partition of unity: For
each u ∈ Rn we have

u =
N∑

i=1

Piui with ui = P T
i u and ‖u‖2

`2 =
N∑

i=1

‖Piui‖2
`2 .

For each index i ∈ 1, . . . , N , local matrices Âi, Bi and Ŝi of size ni × ni, mi × ni and
mi ×mi, respectively, have to be chosen, which determine local matrices K̂i of the form

K̂i =

(
Âi BT

i

Bi BiÂ
−1
i BT

i − Ŝi

)
.

We assume that the local matrices Bi are related to the (global) matrix B by the following
commutativity condition

QT
i B = BiP

T
i for all i = 1, 2, . . . , N. (6)

A similar condition is needed for the local matrices Âi: We assume that there exists a
(global) matrix Â (typically not equal to A) such that:

P T
i Â = ÂiP

T
i for all i = 1, 2, . . . , N. (7)

From the local matrices Ŝi the following (global) matrix Ŝ is constructed:

Ŝ =

(
N∑

i=1

QiŜ
−1
i QT

i

)−1

. (8)

With the help of the local saddle point matrices K̂i the following iterative method is
constructed: Starting from some approximations x(j) and p(j) of the exact solutions x and
p of (4) we consider iterative methods of form:

x(j+1) = x(j) +
N∑

i=1

Pi s
(j)
i , p(j+1) = p(j) +

N∑
i=1

Qi r
(j)
i ,

where (s
(j)
i , r

(j)
i ) ∈ Rni × Rmi solves a local saddle point problem of the form

K̂i

(
s
(j)
i

r
(j)
i

)
=

(
P T

i

[
f − Ax(j) −BT p(j)

]
QT

i

[
g −Bx(j) + Cp(j)

] ) for all i = 1, . . . , N.
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That means, that the residuals of the approximations are first restricted to the smaller
spaces, then a series of small saddle point problems must be solved, and, finally, the
solutions are prolongated and determine the next iterate. This process can be viewed as
an additive Schwarz method.

It was shown in [14] that, under the assumptions (5), (6) and (7) and with the construc-
tion (8), this iterative method can be written equivalently as the following preconditioned
Richardson method:

x(j+1) = x(j) + s(j), p(j+1) = p(j) + r(j), (9)

where s(j), r(j) solve the equation

K̂
(

s(j)

r(j)

)
=

(
f
g

)
−K

(
x(j)

p(j)

)
with K̂ =

(
Â BT

B BÂ−1BT − Ŝ

)
. (10)

So the additive Schwarz-type iterative method can be represented as an symmetric inexact
Uzawa method. Let M denote the associated iteration matrix, given by

M = I − K̂−1K,

which controls the error propagation for the iterative method.
In the next theorem an important estimate is formulated which is needed in the forth-

coming multigrid convergence analysis. Here and in the sequel the following notations are
used: M < N (N > M) iff N −M is positive definite, and M ≤ N (N ≥ M) iff N −M
is positive semi-definite, for symmetric matrices M and N . Furthermore, for a symmetric
and positive definite matrix S, the norms ‖v‖S and ‖M‖S of a vector v and a matrix M
(as a representation of a bilinear form) are given by

‖v‖S =
√

(Sv, v)`2 and ‖M‖S = sup
v,w 6=0

|(Mv, w)`2|
‖v‖S ‖w‖S

.

Theorem 1. Let A be a symmetric and positive semi-definite n× n matrix, B an m× n
matrix, and C be a symmetric and positive semi-definite m × m matrix. Let Â be a
symmetric and positive definite n× n matrix, and Ŝ a symmetric positive definite m×m
matrix, satisfying

Â ≥ A and Ŝ ≥ C + BÂ−1BT .

Then
‖KMm‖L ≤ η0(m) ‖Q‖L,

where K is given by (4), K̂ is given by (10), Q is given by

Q =

(
Â− A 0

0 Ŝ − C −BÂ−1BT

)
,

L is an arbitrary symmetric and positive definite matrix, and

η0(m) =
1

2m−1

(
m− 1

[m]/2]

)
≤


√

2

π(m− 1)
for even m,√

2

πm
for odd m.
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Here
(

n
k

)
denotes the binomial coefficient and [x] denotes the largest integer smaller than

or equal to x ∈ R.

Proof. For the special case of the Euclidean norm (L = I) see [14], the proof for more
general norms is completely analogous.

3 Multigrid convergence analysis

A classical technique for analyzing the convergence of multigrid methods relies on two
properties: the approximation property and the smoothing property, see Hackbusch [11],
which will be discussed in this section.

First we need an appropriate (L2-like) mesh-dependent norm |||(w, q)|||0,k on Xk × Qk.
We introduce a second discrete norm on Xk ×Qk by

|||(s, r)|||2,k = sup
0 6=(w,q)∈Xk×Qk

|Bk((s, r), (w, q))|
|||(w, q)|||0,k

.

Now, we can formulate the approximation property and the smoothing property: Consider
the two-grid algorithm (i.e. exact solution of the coarse grid correction equation (3) at level
k− 1). The approximation property measures the effect of the coarse grid correction: It is
assumed that there is a constant cA which is independent of k such that

|||Bk|||0,k |||(x(m+1)
k − xk, p

(m+1)
k − pk)|||0,k ≤ cA |||(x(m)

k − xk, p
(m)
k − pk)|||2,k, (11)

where the norm |||Bk|||0,k of the bilinear form Bk is given by

|||Bk|||0,k = sup
0 6=(s,r),(w,q)∈Xk×Qk

|Bk((s, r), (w, q))|
|||(s, r)|||0,k |||(w, q)|||0,k

.

The remaining part to complete the proof of the two-grid convergence is the smoothing
property, which measures the effect of the smoothing procedure: It is assumed that

|||(x(m)
k − xk, p

(m)
k − pk)|||2,k ≤ η(m) |||Bk|||0,k |||(x(0)

k − xk, p
(0)
k − pk)|||0,k

for some function η(m) which is independent of k, and

η(m) → 0 for m →∞.

The convergence of the two-grid method for a sufficiently large number m of smoothing
steps easily follows by combining the approximation property and the smoothing property.
From this the convergence of the multigrid method can be derived by standard arguments,
see, e.g., Hackbusch [11].

Let Lk be the symmetric and positive definite matrix on Rnk × Rmk which represents
the mesh dependent norm |||(w, q)|||0,k:

|||(w, q)|||0,k =

((
Lk

(
w
q

)
,

(
w
q

))
`2

)1/2

=

∥∥∥∥(w
q

)∥∥∥∥
Lk

(12)
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for w ∈ Xk, q ∈ Qk with vector representations w ∈ Rnk , q ∈ Rmk .
It easily follows that the smoothing property translates to the following condition in

matrix-notation:
‖KkMm

k ‖Lk
≤ η(m) ‖Kk‖Lk

. (13)

Comparing with Theorem 1 it is immediately clear that the smoothing property (13) is
satisfied for the additive Schwarz-type method introduced in the previous section, if the
local problems are constructed in such a way that the associated global matrices Âk, Bk

and Ŝk, see (7), (6) and (8), satisfy the conditions

Âk ≥ Ak and Ŝk ≥ Ck + BkÂ
−1
k BT

k (14)

and if, additionally, the following scaling condition holds:

‖Qk‖Lk
≤ cR ‖Kk‖Lk

with Qk =

(
Âk − Ak 0

0 Ŝk − Ck −BkÂ
−1
k BT

k

)
(15)

for some constant cR independent of k. The smoothing rate is then given by η(m) =
cR η0(m) = O(1/

√
m).

In [14] this strategy was successfully applied to the Stokes problem, discretized by the
Taylor-Hood mixed finite element method. For the global matrix Âk at level k, required
in Condition (7), a constant multiple of diag Ak was chosen. Special local matrices were
constructed and all requirements of the analysis could be verified. In particular, the scaling
condition (15) could be shown. In the next section the application to a typical class of
problems from optimal control is discussed. For this class, the same choice for Âk as a
constant multiple of diag Ak leads to a violation of the scaling condition (15). It will be
shown how the construction must be modified to keep the right scaling without loosing
any of the other requirements.

4 Application to an optimal control problem

Let Ω be a bounded convex polygonal domain in R2. Let L2(Ω) and H1(Ω) denote the
usual Lebesgue space and Sobolev space, respectively. We consider the following elliptic
optimal control problem: Find the state y ∈ H1(Ω) and the control u ∈ L2(Ω) such that

J(y, u) = min
(z,v)∈H1(Ω)×L2(Ω)

J(z, v)

with cost functional

J(z, v) =
1

2
‖z − yd‖2

L2(Ω) +
ν

2
‖v‖2

L2(Ω)

subject to the state equations

−∆y + y = u in Ω,
∂y

∂n
= 0 on Γ,
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where Γ denotes the boundary of Ω, yd ∈ L2(Ω) is the desired state and ν > 0 is the weight
of the cost of the control (or simply a regularization parameter).

By introducing the adjoint state p ∈ H1(Ω) we get the following optimality system, see
e.g., [17]:

1. The adjoint state equation:

−∆p + p = − (y − yd) in Ω,

∂p

∂n
= 0 on Γ.

(16)

2. The control equation:
νu− p = 0 in Ω. (17)

3. The state equation:
−∆y + y = u in Ω,

∂y

∂n
= 0 on Γ.

(18)

The weak formulation of this problem leads to a mixed variational problem: Find x =
(y, u) ∈ X = Y × U with Y = H1(Ω), U = L2(Ω) and p ∈ Q = H1(Ω) such that

a(x, w) + b(w, p) = 〈F, w〉 for all w ∈ X,

b(x, q) = 0 for all q ∈ Q
(19)

with

a(x, w) = (y, z)L2(Ω) + ν(u, v)L2(Ω),

b(w, q) = (z, q)H1(Ω) − (v, q)L2(Ω),

〈F, w〉 = (yd, z)L2(Ω),

where w = (z, v) with z ∈ Y , v ∈ U , and (., .)H is the standard scalar product in a Hilbert
space H, whose norm is denoted by ‖.‖H .

The mixed variational problem can also be written as a variational problem on X ×Q:
Find (x, p) ∈ X ×Q such that

B((x, p), (w, q)) = 〈F , (w, q)〉 for all (w, q) ∈ X ×Q

with the bilinear form

B((x, p), (w, q)) = a(x, w) + b(w, p) + b(x, q)

and the linear functional
〈F(w, q)〉 = 〈F, w〉.

It is trivial that F is a bounded and linear functional on X×Q. The next lemma guarantees
that the problem is well-posed:
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Lemma 1. The bilinear form B is stable and bounded on X × Q, i.e., there are positive
constants c and C such that

c ‖(s, r)‖X×Q ≤ sup
0 6=(w,q)∈X×Q

B((s, r), (w, q))

‖(w, q)‖X×Q

≤ C ‖(s, r)‖X×Q for all (s, r) ∈ X ×Q,

where the norm on X ×Q is given by

‖(w, q)‖2
X×Q = ‖w‖2

X + ‖q‖2
Q

with
‖w‖2

X = ‖z‖2
H1(Ω) + ‖v‖2

L2(Ω) for w = (z, v) and ‖q‖Q = ‖q‖H1(Ω).

Proof. Boundedness follows easily from Cauchy’s inequality, the stability from Brezzi’s
Theorem, see [8], if the bilinear form a is coercive on the set

ker B = {w ∈ X : b(w, q) = 0 for all q ∈ Q},

i.e.: there exists a constant α > 0 such that

a(w, w) ≥ α ‖w‖2
X for all w ∈ ker B, (20)

and the inf-sup condition for b is satisfied, i.e.: there exists a constant β > 0 such that

sup
0 6=w∈X

b(w, q)

‖w‖X

≥ β ‖q‖Q for all q ∈ Q. (21)

To show (20) let w = (z, v) ∈ ker B. Then, in particular, we have b(w, z) = 0, i.e.

(z, z)H1(Ω) = (v, z)L2(Ω),

which implies
‖z‖2

H1(Ω) ≤ ‖v‖L2(Ω) ‖z‖L2(Ω) ≤ ‖v‖L2(Ω) ‖z‖H1(Ω).

Hence: ‖z‖H1(Ω) ≤ ‖v‖L2(Ω). Then

a(w, w) = ‖z‖2
L2(Ω) + ν ‖v‖2

L2(Ω) ≥ ‖z‖2
L2(Ω) + ν ‖z‖2

H1(Ω) ≥ ν ‖z‖2
H1(Ω),

which proves (20) with α = ν.
Next we have

sup
0 6=w∈X

b(w, q)

‖w‖X

≥ b((q, 0), q)

‖(q, 0)‖X

=
(q, q)Q

‖q‖Q

= ‖q‖Q,

which shows (21) with β = 1.
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Let (Tk) be a sequence of triangulations of Ω, where Tk+1 is obtained by dividing each
triangle into four smaller triangles by connecting the midpoints of the edges of the triangles
in Tk. The quantity max{diam T : T ∈ Tk} is denoted by hk.

We consider the following discretization by continuous and piecewise linear finite ele-
ments:

Xk = Yk × Uk = {(z, v) ∈ C(Ω̄)× C(Ω̄) : z|T , v|T ∈ P1 for all T ∈ Tk},
Qk = {q ∈ C(Ω̄) : q|T ∈ P1 for all T ∈ Tk},

where P1 denotes the polynomials of total degree less or equal to 1. Then we obtain the
following discrete variational problem: Find xk ∈ Xk and pk ∈ Qk such that

a(xk, wk) + b(wk, pk) = 〈F, wk〉 for all wk ∈ Xk,

b(xk, qk) = 0 for all qk ∈ Qk.
(22)

The discrete mixed variational problem can also be written as a discrete variational problem
on Xk ×Qk: Find (xk, pk) ∈ Xk ×Qk such that

B((xk, pk), (wk, qk)) = 〈F , (wk, qk)〉 for all (wk, qk) ∈ Xk ×Qk. (23)

With exactly the same arguments as above the boundedness and stability of the discrete
mixed problem can be shown with constants c and C independent of k:

Lemma 2. The bilinear form B is uniformly stable and bounded on Xk × Qk, i.e., there
are positive constants c and C such that

c ‖(s, r)‖X×Q ≤ sup
0 6=(w,q)∈Xk×Qk

B((s, r), (w, q))

‖(w, q)‖X×Q

≤ C ‖(s, r)‖X×Q for all (s, r) ∈ Xk ×Qk,

for all k.

By introducing the standard nodal basis, we finally obtain the following saddle point
problem in matrix-vector notation:

Kk

(
xk

p
k

)
=

(
f

k

0

)
with Kk =

(
Ak BT

k

Bk 0

)
where

Ak =

(
Mk 0
0 ν Mk

)
and Bk =

(
Kk −Mk

)
,

Here Mk denotes the mass matrix representing the L2(Ω) scalar product on Yk, and Kk

denotes the stiffness matrix representing the H1(Ω) scalar product on Yk.

12



5 Approximation property

Here we follow the general technique presented in [7] for proving the approximation prop-
erty (11) for the special mesh dependent norm on Xk ×Qk, given by

|||(w, q)|||0,k = hk

(
‖z‖`2 + h2

k ‖v‖`2 + ‖q‖`2
)1/2

(24)

with w = (z, v) ∈ Xk and q ∈ Qk and their vector representations z, v and q.
Nine assumptions (A.1) - (A.9) are formulated in [7] which imply the approximation

property. Assumptions (A.1), (A.2), (A.4) and (A.5) are the (uniform) boundedness and
stability of the continuous and discrete variational problem which were already shown in
Lemma 1 and Lemma 2.

The verification of Assumption (A.3) is the content of the next lemma:

Lemma 3. For all f, g ∈ L2(Ω) the variational problem

B((x, p), (w, q)) = (f, z)L2(Ω) + (g, q)L2(Ω) for all w = (z, v) ∈ X = Y × U, q ∈ Q (25)

has a solution x = (y, u) ∈ H2(Ω) × H1(Ω) and q ∈ H2(Ω). There exists a constant C
such that

‖y‖H2(Ω) + ‖u‖H1(Ω) + ‖p‖H2(Ω) ≤ C (‖f‖L2(Ω) + ‖g‖L2(Ω)).

for all f, g ∈ L2(Ω).

Proof. From (25) with v = 0 and q = 0 we obtain the elliptic variational problem for p:

(p, z)H1(Ω) = (f, z)L2(Ω) + (y, z)L2(Ω) for all z ∈ H1(Ω).

Then elliptic regularity and Lemma 1 imply

‖p‖H2(Ω) ≤ C (‖f‖L2(Ω) + ‖y‖L2(Ω)) ≤ C (‖f‖L2(Ω) + ‖g‖L2(Ω)).

(Througout this proof, C denotes a generic constant.) From (25) with z = 0 and v = 0 we
obtain the elliptic variational problem for y:

(y, q)H1(Ω) = (g, q)L2(Ω) + (u, q)L2(Ω) for all q ∈ H1(Ω).

Then elliptic regularity and Lemma 1 imply

‖y‖H2(Ω) ≤ C (‖g‖L2(Ω) + ‖u‖L2(Ω)) ≤ C (‖f‖L2(Ω) + ‖g‖L2(Ω)).

From (25) with z = 0 and q = 0 we obtain

ν u = p.

Then Lemma 1 implies

‖u‖H1(Ω) =
1

ν
‖p‖H1(Ω) ≤ C (‖f‖L2(Ω) + ‖g‖L2(Ω)).

13



Assumption (A.6) requires the standard L2 estimate of the approximation error of the
finite element space, which is, of course, satisfied.

Assumption (A.7) requires an L2 discretization error estimate for problem (25), which
easily follows from (A.1) - (A.6) by standard arguments (Aubin-Nitsche duality trick),
since the introduced finite element discretization is a conforming method.

Assumption (A.8) requires the equivalence of the mesh-dependent norm with an L2

norm:

|||(w, q)|||0,k ∼
(
‖z‖2

L2(Ω) + h2
k‖v‖2

L2(Ω) + ‖v‖2
L2(Ω)

)1/2

with w = (z, v).

(The symbol ∼ denotes the equivalence of norms.) This is easy to see by standard scaling
arguments.

Finally Assumption (A.9) on the inter-grid transfer operators is trivial since the sub-
spaces are nested.

So, in summary, we have:

Theorem 2. The approximation property (11) is satisfied for the mesh-dependent norm,
given by (24).

6 Smoothing property

For the smoothing procedure we have to define appropriate local sub-problems at grid
level k. So the prolongation operators and the matrices of the local sub-problems must be
specified for the optimal control problem.

Let Nk be the number of nodes of the triangulation Tk. Then we have nk = 2Nk degrees
of freedom for the primal variable xk = (yk, uk) ∈ Xk and mk = Nk degrees of freedom for
the dual variable pk ∈ Qk.

We will now define a space decomposition of Rnk × Rmk into Nk subspaces: For each
i ∈ {1, . . . , Nk} representing a node of the triangulation, let Nk,i be the set of all indices
consisting of i and the indices of all neighboring nodes (all nodes which are connected to
the node with index i by an edge of the triangulation). Then, for each i ∈ {1, . . . , Nk}, the
associated local patch consists of all unknowns of yk and uk which are associated to nodes
with indices from Nk,i and the unknown of pk which is associated to the node with index i,
see Figure 1 for an illustration of a local patch. The corresponding prolongations are the
canonical embeddings into Rnk and Rmk and are denoted by P̂k,i and Qk,i, respectively.

Observe that all entries in P̂k,i and Qk,i are either 0 or 1. A single component of pk

belongs to exactly one patch, while a single component of yk or uk belongs, in general, to
more than one patch. It is easy to see that

Nk∑
i=1

Qk,iQ
T
k,i = I and

Nk∑
i=1

P̂k,iP̂
T
k,i = Dk,

14
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Figure 1: local patches

where

Dk =

(
Dk 0
0 Dk

)
with the Nk×Nk diagonal matrix Dk whose diagonal entries dk,j are the local overlap depth
at the node with index j, i.e., the number of all indices l with j ∈ Nk,l, for j = 1, . . . , Nk.
Observe that

1 ≤ dk,j ≤ dmax for all j = 1, . . . , Nk (26)

with a constant dmax independent of the grid level k.
In order to guarantee Condition (5), we have to scale the prolongations P̂k,i accordingly:

Pk,i = D−1/2
k P̂k,i.

Next we have to choose a matrix Âk, needed on the left-hand side in Condition 7. It seems
to be natural to choose

Âk =
1

σ
diag Ak =

1

σ

(
diag Mk 0

0 diag Mk

)
(27)

with a suitable parameter σ > 0 as it was done in [14] for the Stokes problem. But in order
to prove the smoothing property, we have to check, if the estimate (15) is fulfilled. This is
not the case with this definition of Âk for parameters σ = O(1). Instead we choose:

Âk =
1

σ

(
diag Kk 0

0 diag Mk

)
(28)

with σ small enough to ensure
Âk ≥ Ak.

Since Kk ≥ Mk and the maximal number of non-zero entries per row in Mk and Kk is
bounded by a constant, say nnzx, independently of k, it suffices to choose σ = 1/nnzx.
Here we use the estimate M ≤ nnz(M) diag M for all symmetric and positive definite
matrices M , where nnz(M) denotes the maximum number of non-zero entries per row in
M .

For the local sub-problems we choose just the restriction of Âk to those components of
xk whose indices are in Nk,i:

Âk,i = P̂ T
k,iÂkP̂k,i. (29)

15



Since the matrices Âk and Âk,i are diagonal the condition (7) is satisfied.
The other matrices of the local sub-problems are specified similarly: For

Bk,i = QT
k,iBkD1/2

k P̂k,i (30)

one can verify the relation (6), since

Bk,iP
T
k,i = QT

k,iBkD1/2
k P̂k,iP̂

T
k,iD

−1/2
k

and the i-th component of Bkv depends only on the degrees of freedom on the surrounding
triangles, whose indices are collected in the set Nk,i. On this index set P̂k,iP̂

T
k,i acts like the

identity.
Finally, we set

Ŝk,i =
1

τ
Bk,iÂ

−1
k,iB

T
k,i

with τ small enough to guarantee

Ŝk ≥ BkÂ
−1
k BT

k . (31)

Using (29), (30), and (26), we get

Ŝk,i =
1

τ
QT

k,iBkD
1/2
k Â−1

k D1/2
k BT

k Qk,i ≥
1

τ
QT

k,iBkÂ
−1
k BT

k Qk,i

and with (8)

Ŝk ≥
1

τ
diag(BkÂ

−1
k BT

k ). (32)

So, in order to guarantee (31) it suffices to choose τ such that

1

τ
diag(BkÂ

−1
k BT

k ) ≥ BkÂ
−1
k BT

k .

Since the maximal number of non-zero entries per row in BkÂ
−1
k BT

k is bounded by a
constant, say nnzp, independent of k it suffices to choose τ = 1/nnzp.

The matrix Lk representing the mesh-dependent norm |||.|||0,k is given by

Lk = h2
k

I 0 0
0 h2

k I 0
0 0 I

 .

The last missing part for the smoothing property (13) is the estimate (15), which will
be shown in the next lemma:

Lemma 4. With the setting from above there is a constant cR, independent of k, such that

‖Qk‖Lk
≤ cR ‖Kk‖Lk

with Qk =

(
Âk − Ak 0

0 Ŝk − Ck −BkÂ
−1
k BT

k

)
.
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Proof. Since

0 ≤ Qk =

(
Âk − Ak 0

0 Ŝk −BkÂ
−1
k BT

k

)
≤
(

Âk 0

0 Ŝk

)
we have

‖Kk‖Lk
≤
∥∥∥∥(Âk 0

0 Ŝk

)∥∥∥∥
Lk

.

Using the block diagonal form of Âk and Lk we obtain∥∥∥∥(Âk 0

0 Ŝk

)∥∥∥∥
Lk

=
1

h2
k

max

(
1

σ
‖ diag Kk‖`2 ,

ν

σ h2
k

‖ diag Mk‖`2 , ‖Ŝk‖`2

)
.

It follows from (26) that

Ŝk,i =
1

τ
QT

k,iBkD
1/2
k Â−1

k D1/2
k BT

k Qk,i ≤
dmax

τ
QT

k,iBkÂ
−1
k BT

k Qk,i

and, therefore,

Ŝk ≤
dmax

τ
diag(BkÂ

−1
k BT

k ).

Using this estimate and the simple general estimates ‖ diag M‖`2 ≤ ‖M‖`2 for any matrix
M and ‖M‖`2 ≤ ‖N‖`2 for symmetric matrices M , N with 0 ≤ M ≤ N we obtain∥∥∥∥(Âk 0

0 Ŝk

)∥∥∥∥
Lk

≤ 1

h2
k

max

(
1

σ
‖Kk‖`2 ,

ν

σ h2
k

‖Mk‖`2 ,
dmax

τ
‖BkÂ

−1
k BT

k ‖`2

)
.

Furthermore,

‖BkÂ
−1
k BT

k ‖`2 = ‖σKk(diag Kk)
−1Kk +

σ

ν
Mk(diag Mk)

−1Mk‖`2

≤ ‖σKk(diag Kk)
−1Kk‖`2 +

σ

ν
‖Mk(diag Mk)

−1Mk‖`2

≤ σ nnzx ‖Kk‖`2 +
σ nnzx

ν
‖Mk‖`2

= ‖Kk‖`2 +
1

ν
‖Mk‖`2 ≤

(
1 +

1

ν

)
‖Kk‖`2 .

Summarizing the estimates from above we obtain

‖Qk‖Lk
≤ cR

h2
k

max

(
‖Kk‖`2 ,

ν

h2
k

‖Mk‖`2

)
with cR = max(1/σ, (1 + 1/ν)dmax/τ). Finally, using the fact that the spectral norm of a
block matrix is greater or equal to the spectral norm of each of its sub-blocks, it follows
that

‖Kk‖Lk
≥ 1

h2
k

max

(
‖Kk‖`2 ,

ν

h2
k

‖Mk‖`2

)
,

which completes the proof.
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So, in summary, we have

Theorem 3. For the additive Schwarz smoother constructed in this section the smoothing
property (13) holds with a smoothing rate η(m) = O(1/

√
m).

7 Numerical Experiments

Next we present some numerical results for the domain Ω = (0, 1)×(0, 1) and homogeneous
data yd = 0. The initial grid consists of two triangles by connecting the nodes (0, 0) and
(1, 1). For the first series of experiments the regularization parameter ν was set equal to 1.
The dependence of the convergence rate on the regularization parameter ν was investigated
subsequently.

Randomly chosen starting values for x
(0)
k and p

(0)
k for the exact solution xk = 0 and

pk = 0 were used. The discretized problem was solved by a multigrid iteration with a
W-cycle (µ = 2) and m/2 pre- and m/2 post-smoothing steps. The multigrid iteration was
performed until the Euclidean norm of the solution was reduced by a factor ε = 10−8.

Table 1 contains the total number of unknowns nk +mk, the number of iterations it and
the (average) convergence rates q depending on the level k and the number m of smoothing
steps. It shows a typical multigrid convergence behavior, namely the independence of
the grid level and the expected improvement of the rates with an increasing number of
smoothing steps.

smoothing steps
level nk + mk 5+5 7+7 10+10 15+15

5 3 267 50 0.70 35 0.59 24 0.46 16 0.31
6 12 675 53 0.71 37 0.61 26 0.49 18 0.35
7 49 923 54 0.71 38 0.61 27 0.50 18 0.36
8 198 147 54 0.71 38 0.61 27 0.50 18 0.36
9 789 507 54 0.71 38 0.61 27 0.50 18 0.36

Table 1: Convergence rates for the additive Schwarz smoother

Table 2 shows the convergence rates with the multiplicative version of the smoother.
As expected, the rates are significantly better than the rates for the additive smoother.
The number of smoothing steps which are necessary to achieve convergence on all levels is
much smaller than in the additive version.

For comparison, convergence rates are shown for the additive Schwarz smoother based
on (27) instead of (28) in Table 3. There is a significant increase in the number of iterations
and there is no clear indication of level-independent convergence rates. This underlines
the significance of the modification in the construction of the smoother compared to the
original construction in [14].
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smoothing steps
level nk + mk 5+5 7+7 10+10 15+15

5 3 267 34 0.57 26 0.49 15 0.28 12 0.19
6 12 675 40 0.62 29 0.52 16 0.30 12 0.20
7 49 923 40 0.63 29 0.52 16 0.31 12 0.21
8 198 147 41 0.64 28 0.51 16 0.31 12 0.21
9 789 507 41 0.64 28 0.51 16 0.31 12 0.21

Table 2: Convergence rates for the multiplicative Schwarz smoother

smoothing steps
level nk + mk 5+5 7+7 10+10 15+15

5 3 267 84 0.80 60 0.73 41 0.63 29 0.52
6 12 675 105 0.83 75 0.77 52 0.70 35 0.58
7 49 923 119 0.85 84 0.80 58 0.72 38 0.60
8 198 147 133 0.86 91 0.81 62 0.73 41 0.63
9 789 507 139 0.87 96 0.82 66 0.75 43 0.65

Table 3: Convergence rates for the unmodified additive Schwarz smoother

All numerical experiments shown so far were performed for the regularization parameter
ν = 1. Observe that the analysis presented here does not predict convergence rates that
are robust in ν. And indeed, numerical experiments indicate a mild dependence of the
convergence rate on the regularization parameter ν, see Table 4. The results were obtained
at grid level 9 with 10+10 smoothing steps.

ν it q

1 27 0.50
10−2 33 0.57
10−4 40 0.63

Table 4: Dependence on the regularization parameter ν

In summary, the numerical experiments confirm the theoretical results of a level-
independent convergence rate for the multigrid method with the additive Schwarz smooth-
er. The multiplicative smoother leads to better rates, however, a theoretical analysis for
the convergence and smoothing properties is still missing. The modification of the local
problems compared to previous work, see [14], leads to a significant improvement. The
convergence rates depend only mildly on the regularization parameter.
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8 Concluding remarks

The basic idea of constructing a Schwarz-type smoother carries over to a much wider class
of mixed variational problems: An essential step in the construction of the local problems
is the choice of the matrix Âk. Instead of using for Âk a multiple of the diagonal part
of the discretization matrix Ak corresponding to the bilinear form a : X × X −→ R one
should choose the diagonal part of the discretization matrix corresponding to a positive
bilinear form on X which is coercive and bounded on the whole space X instead. For the
Stokes problem the bilinear form a is already positive, coercive and bounded on X, so the
diagonal of Ak will do the job. For the presented optimal control problem the bilinear form
a is coercive only on Ker B, therefore, Âk was chosen differently.

The local matrices are then constructed by restricting the global matrices to the local
patches. The requirements of the analysis in terms of certain commutativity relations of
the involved global and local matrices determine the size of the patches and the overlap.
Additionally, an appropriate scaling is required which takes into account the local overlap
depth of the components of the primal variables.
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