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Abstract. An optimal control problem for an elliptic equation is investigated with pointwise control constraints.
This paper is concerned with discretization of the control by piecewise linear but discontinuous functions. The state
and the adjoint state are discretized by linear finite elements. Approximations of the optimal solution of the
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that these approximations have convergence order h2.
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1. Introduction. The paper is concerned with the discretization of the elliptic optimal con-
trol problem

J(u) = F (y, u) =
1

2
‖y − yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Ω) (1.1)

subject to the state equations

Ay + a0y = u in Ω

y = 0 on Γ (1.2)

and subject to the control constraints

a ≤ u(x) ≤ b for a.a. x ∈ Ω, (1.3)

where Ω is a bounded domain and Γ is the boundary of Ω; A denotes a second order elliptic
operator of the form

Ay(x) = −
N

∑

i,j=1

Di(aij(x)Djy(x))

where Di denotes the partial derivative with respect to xi, and a and b are real numbers. Moreover,
ν > 0 is a fixed positive number. We denote the set of admissible controls by Uad:

Uad = {u ∈ L2(Ω) : a ≤ u ≤ b a.e. in Ω}.

We discuss here the full discretization of the control and the state equations by a finite element
method. The asymptotic behavior of the discretized problem is studied, and superconvergence
results are established.

The approximation of the discretization for semilinear elliptic optimal control problems is discussed
in Arada, Casas, and Tröltzsch [1]. The optimal control problem (1.1)–(1.3) is a linear-quadratic
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counterpart of such a semilinear problem. Our aim is to construct controls ũ which have an
approximation order of h2. This higher convergence order is the difference to [1].

The discretization of optimal control problems by piecewise constant functions is well investigated,
we refer to Falk [7], Geveci [8]. Piecewise constant and piecewise linear discretization in space are
discussed for a parabolic problem in Malanowski [12]. Theory and numerical results for elliptic
boundary control problems are contained in Casas and Tröltzsch [5] and Casas, Mateos, and
Tröltzsch [4].

Piecewise linear control discretizations for elliptic optimal control problems are studied by Casas
and Tröltzsch, see [5]. In an abstract optimization problem, piecewise linear approximations are
investigated in Rösch [15]. In all papers, the convergence order is h or h3/2.

A quadratic convergence result is proved by Hinze [10]. In that approach only the state equation
is discretized. The control is obtained by a projection of the adjoint state to the set of admissible
controls.

In this paper, we combine the advantages of the different approaches. After solving a fully dis-
cretized optimal control problem, a control ũ is calculated by the projection of the adjoint state ph

in a post-processing step. Although the approximation of the discretized solution is only of order
h3/2, we will show that this post-processing step improves the convergence order to h2. This idea
was already used in the paper [13] for piecewise constant control functions. The authors want to
point out, that the main idea of the proof cannot be applied to other types of functions (especially
piecewise linear controls). This concerns in particular the derivation of formulas (3.11), (3.13),
and (4.2). These formulas are the main tool in the proof of the superconvergence results in that
paper. Thus, a direct transfer of the ideas in [13] seems to be impossible. In contrast to [13] we will
introduce an auxiliary control that is constructed using both the solution of the continuous and
the discretized optimal control problem. Here we need an approximation result in the L∞-norm,
see [16].

The paper is organized as follows: In Section 2 the discretizations are introduced and the main
results are stated. Section 3 contains auxiliary results. The proofs of the superconvergence results
are given in Section 4. The paper ends with numerical experiments shown in Section 5.

2. Discretization and superconvergence results. Throughout this paper, Ω denotes a
convex bounded open subset in IRN with N = 2, 3 of class C1,1. The coefficients aij of the operator
A belong to C0,1(Ω̄) and satisfy the ellipticity condition

m0|ξ|2 ≤
N

∑

i,j=1

aij(x)ξiξj ∀(ξ, x) ∈ IRN × Ω̄, m0 > 0.

Moreover, we require aij(x) = aji(x) and yd ∈ Lp(Ω) for some p > N . For the function a0 ∈ L∞(Ω),
we assume a0 ≥ 0. Next, we recall a result from Grisvard [9], Theorem 2.4.2.5.

Lemma 2.1. [9] For every p > N and every function g ∈ Lp(Ω), the solution y of

Ay + a0y = g in Ω, y|Γ = 0,

belongs to H1
0 (Ω) ∩ W 2,p(Ω). Moreover, there exists a positive constant c, independent of a0 such

that

‖y‖W 2,p(Ω) ≤ c‖g‖Lp(Ω).
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Consequently, a solution operator S of (1.2) is defined mapping the control u to the state y,
i.e., y = Su. Although we have seen that the operator S maps from Lp(Ω) to W 2,p(Ω), we will
investigate this operator in other function spaces in particular as operator acting in L2(Ω).

Next, we introduce the adjoint equation

Ap + a0p = y − yd in Ω

p = 0 on Γ (2.1)

The existence of a unique solution is justified by Lemma 2.1. Moreover, we introduce the operator
S∗ as the solution operator of the adjoint equation, i.e., p = S∗(y − yd). Note that the operator
S∗ is the adjoint operator of S, if the operator S is investigated as an operator acting in L2(Ω).

Due to Lemma 2.1, the adjoint equation admits a unique solution in H1
0 (Ω)∩W 2,p(Ω), if yd ∈ Lp(Ω).

This space is embedded in C0,1(Ω̄) for p > N .

In the sequel, we will use the following notation. The optimal control is denoted by ū. The optimal
state ȳ := Sū denotes the corresponding solution of (1.2) and the adjoint state p̄ := S(ȳ − yd)
means the corresponding solution of (2.1).

Introducing the projection

Π[a,b](f(x)) = max(a, min(b, f(x))),

we can formulate the necessary and sufficient first-order optimality condition for (1.1)–(1.3).

Lemma 2.2. The variational inequality

(p̄ + νū, u − ū)L2(Ω) ≥ 0 for all u ∈ Uad (2.2)

is necessary and sufficient for the optimality of ū. This condition can be expressed equivalently by

ū = Π[a,b]

(

−1

ν
p̄

)

. (2.3)

Proof. Since the optimal control problem is strictly convex and radially bounded, we obtain the
existence of a unique optimal solution. The optimality condition can be formulated as variational
inequality (2.2). A standard pointwise a.e. discussion of this variational inequality leads to the
projection formula (2.3), see [12].

We are now able to introduce the discretized problem. We define a finite-element based approxima-
tion of the optimal control (1.1)–(1.3). To this aim, we consider a family of triangulations (Th)h>0

of Ω̄. With each element T ∈ Th, we associate two parameters ρ(T ) and σ(T ), where ρ(T ) denotes
the diameter of the set T and σ(T ) is the diameter of the largest ball contained in T . The mesh
size of the grid is defined by h = max

T∈Th

ρ(T ). We suppose that the following regularity assumptions

are satisfied.

(A1) There exist two positive constants ρ and σ such that

ρ(T )

σ(T )
≤ σ,

h

ρ(T )
≤ ρ

hold for all T ∈ Th and all h > 0.
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(A2) Let us define Ω̄h =
⋃

T∈Th

T , and let Ωh and Γh denote its interior and its boundary, respectively.

We assume that Ω̄h is convex and that the vertices of Th placed on the boundary of Γh are points
of Γ. From [14], estimate (5.2.19), it is known that

|Ω \ Ωh| ≤ Ch2,

where |.| denotes the measure of the set. Moreover, we set

Uh = {vh ∈ L∞(Ω) : vh ∈ P1 for all T ∈ Th, }, Uad
h = Uh ∩ Uad,

Vh = {vh ∈ C(Ω̄) : vh ∈ P1 for all T ∈ Th, and vh = 0 on Ω̄ \ Ωh},

where P1 is the space of polynomials of degree less or equal than 1. For each uh ∈ Uh, we denote
by yh the unique element of Vh that satisfies

a(yh, vh) =

∫

Ω

uhvh dx ∀vh ∈ Vh, (2.4)

where a : Vh × Vh → IR is the bilinear form defined by

a(yh, vh) =

∫

Ω



a0(x)yh(x)vh(x) +

2
∑

i,j=1

aij(x)Diyh(x)Djvh(x)



 dx.

In other words, yh is the approximated state associated with uh. Via this equation, we define a
solution operator Sh, yh = Shuh. Moreover, because of yh = vh = 0 on Ω̄ \Ωh the integrals over Ω
can be replaced by integrals over Ωh. The finite dimensional approximation of the optimal control
problem is defined by

inf Jh(uh) =
1

2
‖yh − yd‖2

L2(Ω) +
ν

2
‖uh‖2

L2(Ω) uh ∈ Uad
h . (2.5)

The adjoint equation is discretized in the same way

a(ph, vh) =

∫

Ω

(yh − yd)vh dx ∀vh ∈ Vh. (2.6)

We define the operator S∗

h by the relation ph = S∗

h(yh − yd). Note, that the operators Sh and S∗

h

can also be investigated as operators acting in L2(Ω).

For our superconvergence result we need an additional assumption for ū. We know already that the
associated adjoint state p̄ belongs to a space W 2,p(Ω) for a certain p > 2. The optimal control ū is
obtained by the projection formula (2.3). Therefore, the optimal control ū is a continuous function
and we can differ between inactive point (i.e. ū(x) ∈ (a, b)) and active points ū(x) ∈ {a, b}. Hence,
we can classify the triangles Ti in two sets K1 and K2:

K1 = {Ti : Ti contains active and inactive points},
K2 = {Ti : Ti contains only active or only inactive points}. (2.7)

The set K2 covers the smooth part of ū, i.e. the optimal control belongs to the space W 2,p(K2).
In contrast to this, the set K1 contains the Lipschitz-part of ū, since W 2,p(Ω) is embedded in
C0,1(Ω̄) and the projection operator is continuous from C0,1(Ω̄) to C0,1(Ω̄). Clearly, the number
of triangles in K1 grows for decreasing h. Nevertheless, the following additional assumption is
fulfilled in many practical cases:

(A3) |K1| ≤ c · h.
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Let ū be the optimal solution of (1.1)–(1.3) with associated state ȳ = Sū and adjoint state p̄ =
S∗(ȳ − yd). Next, we denote the optimal solution of (2.5) by ūh. Morover, we introduce the
associated discretized state ȳh = Shūh and the corresponding discretized adjoint state p̄h = S∗

h(ȳh−
yd).

Similar to [13], we propose a post-processing step. We start by the optimal solution ūh. Although
this control has only approximation rate h3/2 (see [16]), we will prove that the approximation rate
of the state and the adjoint state is even h2:

Lemma 2.3. Assume that the assumptions (A1)–(A3) hold. Then the estimates

‖ȳ − ȳh‖L2(Ω) ≤ ch2 (2.8)

‖p̄ − p̄h‖L2(Ω) ≤ ch2 (2.9)

are valid.

The control ũh is calculated by a projection of the discrete adjoint state ph(uh) to the admissible
set

ũh(x) = Π[a,b](−
1

ν
(p̄h)(x)).

Now, we are able to state the main result.

Theorem 2.4. Let ũ be the control constructed above. Under the assumptions (A1)–(A3) we
obtain the error estimate

‖ū − ũh‖L2(Ω) ≤ ch2. (2.10)

The proofs of Lemma 2.3 and Theorem 2.4 are derived in Section 4.

3. Finite element estimates. In this section, we collect results from the finite element
theory for elliptic equations.

Lemma 3.1. The norms of the discrete solution operators Sh and S∗

h are bounded,

‖Sh‖L2(Ω)→L∞(Ω) ≤ c, ‖S∗

h‖L2(Ω)→L∞(Ω) ≤ c,

‖Sh‖L2(Ω)→L2(Ω) ≤ c, ‖S∗

h‖L2(Ω)→L2(Ω) ≤ c,

‖Sh‖L2(Ω)→H1

0
(Ω) ≤ c, ‖S∗

h‖L2(Ω)→H1

0
(Ω) ≤ c,

‖Sh‖L∞(Ω)→L∞(Ω) ≤ c, ‖S∗

h‖L∞(Ω)→L∞(Ω) ≤ c,

where c is, as always, independent of h.

The proof of this standard result can be found in several books about finite elements, for instance
[3],[6].

Lemma 3.2. Let f ∈ L2(Ω) be any function. The discretization error can be estimated by

‖Sf − Shf‖L2(Ω) ≤ ch2‖f‖L2(Ω), (3.1)

‖S∗f − S∗

hf‖L2(Ω) ≤ ch2‖f‖L2(Ω). (3.2)

For the proof we refer to [3],[6].

An estimate in the L∞-norm plays an important part in the proof of the main result. Hence we
recall a corresponding result from [16].
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Lemma 3.3. [16] Let ū and ūh be the optimal solutions of the undiscretized problem and the
discretized problem, respectively. Then an estimate

‖ū − ūh‖L∞(Ω) ≤ c∞h (3.3)

holds true with a positive constant c∞.

Next, we will introduce an auxiliary function wh ∈ Uad
h by

wh(x) =

{

ūh(x) if x ∈ Ti ⊂ K1

(ihū)(x) if x ∈ Ti ⊂ K2
(3.4)

with the set K1 and K2 introduced in (2.7). Here, ihū denotes the linear interpolate of the control
ū on the triangle Ti.

Let us comment this choice of the auxiliary function wh. This function approximates the continuous
optimal control in order h2 in the L2-norm on the smooth parts of the continuous control. The
approximation order is h on the critical set K1 (containing the kinks). This is used in the next
lemma. Moreover, on the set K1 the auxiliary function coincides with the discretized solutions.
This property is the key point in the proof of the main results, since we can drop corresponding
terms in certain variational inequalities.

Moreover, the auxiliary function wh is defined as a discontinuous function. Therefore, the following
proving technique cannot be applied for piecewise linear and continuous controls.

Lemma 3.4. The estimate

(vh, ū − wh)L2(Ω) ≤ ch2‖vh‖L∞(Ω)

(

‖ū‖L2(Ω) + ‖yd‖L2(Ω) + c∞
)

(3.5)

is valid for all vh ∈ Vh, provided that Assumptions (A1)–(A3) are fulfilled.

Proof. With the sets K1 and K2 introduced in (2.7) we have

(vh, ū − wh)L2(Ω) =

∫

K1

vh(ū − wh) dx +

∫

K2

vh(ū − wh) dx. (3.6)

The K1-part can be estimated by

∣

∣

∣

∣

∫

K1

vh(ū − wh) dx

∣

∣

∣

∣

≤ ‖vh‖L∞(Ω)‖ū − ūh‖L∞(K1)|K1|. (3.7)

using definition (3.4). Now, (3.3), and (A3) imply

∣

∣

∣

∣

∫

K1

vh(ū − wh) dx

∣

∣

∣

∣

≤ cc∞h2‖vh‖L∞(Ω). (3.8)

For a triangle T of the K2-part we have

∫

K2

vh(ū − wh) dx =

∫

K2

vh(ū − ihū) dx

again using definition (3.4). Consequently we find

∫

K2

vh(ū − wh) dx ≤ ‖vh‖L2(Ω)‖ū − ihū‖L2(K2). (3.9)
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Each triangle Ti of the set K2 contains only active or inactive points. In the active triangles we
have ū = a or ū = b. Consequently the expression ū − ihū vanishes on such triangles. On the
inactive triangles we can replace ū − ihū by − 1

ν (p̄ − ihp̄). Together with Lemma 2.1, this implies

‖ū − ihū‖L2(K2) ≤
1

ν
‖p̄ − ihp̄‖L2(K2) ≤ ch2‖p̄‖H2(Ω) ≤ ch2(‖ū‖L2(Ω) + ‖yd‖L2(Ω)). (3.10)

Combining (3.8),(3.9), and (3.10), the assertion is obtained.

Lemma 3.5. Let wh be the functions defined by (3.4). In addition, we assume that the assumptions
(A1)–(A3) are satisfied. Then the estimate

‖Shū − Shwh‖L2(Ω) ≤ ch2(c∞ + ‖ū‖L2(Ω) + ‖yd‖L2(Ω)) (3.11)

holds true.

Proof. We start with

‖Shū − Shwh‖2
L2(Ω) = (Shū − Shwh, Shū − Shwh)L2(Ω)

= (S∗

hShū − S∗

hShwh, ū − wh)L2(Ω) (3.12)

Next, we use estimate (3.5) and obtain

‖Shū − Shwh‖2
L2(Ω) ≤ ch2‖S∗

hShū − S∗

hShwh‖L∞(Ω)

(

‖ū‖L2(Ω) + ‖yd‖L2(Ω) + c∞
)

.

Applying Lemma 3.1, we obtain

‖S∗

hShū − S∗

hShwh‖L∞(Ω) ≤ c‖Shū − Shwh‖L2(Ω).

Combining the last two inequalities, we end up with

‖Shū − Shwh‖L2(Ω) ≤ ch2(c∞ + ‖ū‖L2(Ω) + ‖yd‖L2(Ω))

which is exactly the assertion.

Corollary 3.6. If the assumptions of Lemma 3.5 hold, then, we have

‖S∗

h(Shū − yd) − S∗

h(Shwh − yd)‖L2(Ω) ≤ ch2(c∞ + ‖ū‖L2(Ω) + ‖yd‖L2(Ω)). (3.13)

By means of Lemma 3.2, we obtain in addition

‖p̄ − S∗

h(Shwh − yd)‖L2(Ω) ≤ ch2(c∞ + ‖ū‖L2(Ω) + ‖yd‖L2(Ω)). (3.14)

4. Superconvergence properties. In this section we will prove the main results.

Lemma 4.1. The inequality

(p̄ + νū, ūh − wh)L2(Ω) ≥ 0 (4.1)

is satisfied.

Proof. By definition, we have wh = ūh on the set K1. Consequently this part of the inner product
vanishes. The set K2 contains two types of triangles. It holds p̄ + νū = 0 on all triangles where
no constraint is active. Consequently this part of the scalar product vanishes, too. It remains to
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discuss the triangles where a constraint is active. Here we have ū = wh = a or ū = wh = b. In this
case the optimality condition (2.2) for ū implies the desired inequality.

Lemma 4.2. Assume that the assumptions (A1)-(A3) are fulfilled. Then, we have

‖wh − ūh‖L2(Ω) ≤ ch2(c∞ + ‖ū‖L2(Ω) + ‖yd‖L2(Ω)). (4.2)

Proof. We start with the optimality condition for ūh

(p̄h + νūh, uh − ūh)L2(Ω) ≥ 0 for all uh ∈ Uad
h . (4.3)

This inequality is tested with wh

(p̄h + νūh, wh − ūh)L2(Ω) ≥ 0. (4.4)

Next, we add the inequalities (4.1) and (4.4) and obtain

(p̄ − p̄h + ν(ū − ūh), ūh − wh)L2(Ω) ≥ 0. (4.5)

or equivalently

ν(ū − ūh, ūh − wh)L2(Ω) + (p̄ − p̄h, ūh − wh)L2(Ω) ≥ 0. (4.6)

Using the definition of wh, we find

ν(ū − ūh, ūh − wh)L2(Ω) = −ν‖ūh − wh‖2
L2(Ω) + ν(ū − wh, ūh − wh)L2(Ω)

= −ν‖ūh − wh‖2
L2(Ω) + ν(ū − ihū, ūh − wh)L2(K2) (4.7)

since the K1-part vanishes because of ūh = wh on K1. The set K2 contains the smooth parts of
the control. Consequently, we find

ν(ū − ihū, ūh − wh)L2(K2) ≤ ch2‖ū‖H2(Ω)‖ūh − wh‖L2(Ω) ≤ ch2‖p̄‖H2(Ω)‖ūh − wh‖L2(Ω).

Inserting this formula and (4.7) in (4.6), we get

ν‖ūh − wh‖2
L2(Ω) − (p̄ − p̄h, ūh − wh)L2(Ω) ≤ ch2‖p̄‖H2(Ω)‖ūh − wh‖L2(Ω) (4.8)

Next, we estimate the inner product in (4.8)

(p̄ − p̄h, ūh − wh)L2(Ω) = (p̄ − S∗

h(Shūh − yd), ūh − wh)L2(Ω)

= (p̄ − S∗

h(Shwh − yd), ūh − wh)L2(Ω) (4.9)

+(S∗

h(Shwh − yd) − S∗

h(Shūh − yd), ūh − wh)L2(Ω). (4.10)

Now, Corollary 3.6 delivers the estimate for (4.9)

(p̄ − S∗

h(Shwh − yd), wh − ūh)L2(Ω) ≤ ch2(c∞ + ‖ū‖L2(Ω) + ‖yd‖L2(Ω))‖ūh − wh‖L2(Ω). (4.11)

The second term (4.10) is estimated as follows

(S∗

h(Shwh − yd) − S∗

h(Shūh − yd), ūh − wh)L2(Ω) = (S∗

hSh(wh − ūh), ūh − wh)L2(Ω)

= (Sh(wh − ūh), Sh(ūh − wh))L2(Ω)

≤ 0 (4.12)
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Inserting (4.9)–(4.12) in (4.8), we obtain

ν‖ūh − wh‖2
L2(Ω) ≤ ch2(‖p̄‖H2(Ω)‖ + c∞ + ‖ū‖L2(Ω) + ‖yd‖L2(Ω))‖ūh − wh‖L2(Ω). (4.13)

From Lemma 2.1 we get

‖p̄‖H2(Ω) ≤ c(‖ū‖L2(Ω) + ‖yd‖L2(Ω)). (4.14)

The last two inequalities imply the assertion.

Now, we are ready to prove Lemma 2.3.

Proof. (Lemma 2.3) We start with

‖ȳ − ȳh‖L2(Ω) ≤ ‖ȳ − Shū‖L2(Ω) + ‖Shū − Shwh‖L2(Ω) + ‖Shwh − ȳh‖L2(Ω). (4.15)

The first term is estimated by Lemma 3.2. The second term was already investigated in Lemma
3.5. For the last term we use Lemma 3.1. Hence, we find

‖ȳ − ȳh‖L2(Ω) ≤ ch2(c∞ + ‖ū‖L2(Ω) + ‖yd‖L2(Ω)) + c‖wh − ūh‖L2(Ω). (4.16)

Now, Lemma 4.2 implies

‖ȳ − ȳh‖L2(Ω) ≤ ch2(c∞ + ‖ū‖L2(Ω) + ‖yd‖L2(Ω)). (4.17)

It remains to show (2.9). Here, we find

‖p̄− p̄h‖L2(Ω) ≤ ‖p̄− S∗

h(ȳ − yd)‖L2(Ω) + ‖S∗

h(ȳ − yd) − p̄h‖L2(Ω). (4.18)

The first norm can be estimated by Lemma 3.2. For the second one we use (4.17) and Lemma 3.1.
Consequently, we end up with

‖p̄ − p̄h‖L2(Ω) ≤ ch2(c∞ + ‖ū‖L2(Ω) + ‖yd‖L2(Ω)) (4.19)

and the assertion is shown.

We have already shown the superconvergence properties for the state and the adjoint state. This
superconvergence is transferred to the control via the postprocessing.

Proof. (Theorem 2.4) By the definition of ũh, we obtain

‖ū − ũh‖L2(Ω) =

∥

∥

∥

∥

Π[a,b]

(

−1

ν
p̄

)

ū − Π[a,b]

(

−1

ν
p̄h

)∥

∥

∥

∥

L2(Ω)

. (4.20)

The projection operator is lipschitz continuous with constant 1. Consequently, we get

‖ū − ũh‖L2(Ω) ≤
1

ν
‖p̄ − p̄h‖L2(Ω) . (4.21)

Inserting (4.19), we end up with

‖ū − ũh‖L2(Ω) ≤ ch2(c∞ + ‖ū‖L2(Ω) + ‖yd‖L2(Ω)). (4.22)
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5. Numerical tests. Our approximation theory is tested for two examples where the exact
solution of the undiscretized optimal control problem is known. These examples were originally
introduced in [13].

In both cases, the Laplace operator −∆ was chosen for the elliptic operator A. The domain Ω is the
unit square (0, 1) × (0, 1). We used uniform meshs, where the parameter Nh denotes the number
of intervals in which the edges are divided. Hence, the quantities Nh and h are connected by the
formula Nh ·h =

√
2. Both optimization problems were solved numerically by a primal-dual active

set strategy, see [2] and [11]. The discretization was already described in Section 2: The state y

and the adjoint state p were approximated by piecewise linear functions, whereas the control u is
discretized by piecewise linear, but discontinuous functions. For comparison we also used piecewise
constant functions for the control u.

The first example is a homogeneous Dirichlet problem, which fulfills the assumptions mentioned
at the beginning of section 2, except the boundary regularity. Although Γ is not of class C1,1, the
W 2,p-regularity of p̄ (see Lemma 2.1) is obtained by a result of Grisvard [9] for convex polygonal
domain. In the second example, a Neumann boundary problem is studied. In this case, the
theoretical results does not exactly fit to the problem. However, in the case Ωh = Ω, the theory
can be easily adapted.

Example 1. In this example, the Laplace equation with homogeneous Dirichlet boundary con-
ditions is investigated, i.e. a0 ≡ 0 in (1.2). Thus, the state equation is given by

−∆y = u in Ω

y = 0 on Γ. (5.1)

We define the optimal state by

ȳ = ya − yg

with an analytical part ya = sin(πx1) sin(πx2) and a less smooth function yg, which is defined as
the solution of

−∆yg = g in Ω

yg = 0 on Γ.

The function g is given by

g(x1, x2) =







uf(x1, x2) − a , if uf (x1, x2) < a

0 , if uf (x1, x2) ∈ [a, b]
uf(x1, x2) − b , if uf (x1, x2) > b

with uf (x1, x2) = 2π2 sin(πx1) sin(πx2). Due to the state equation (5.1), we obtain for the exact
optimal control ū

ū(x1, x2) =







a , if uf(x1, x2) < a

uf (x1, x2) , if uf(x1, x2) ∈ [a, b]
b , if uf(x1, x2) > b

.

For the optimal adjoint state p̄, we find

p̄(x1, x2) = −2π2ν sin(πx1) sin(πx2).

Due to the adjoint state equation, we finally get

yd(x1, x2) = ȳ + ∆p̄ = ya − yg + 4π4ν sin(πx1) sin(πx2).
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It can be easily shown, that these functions fulfill the necessary and sufficient first order optimality
conditions. In the numerical tests, we chose a = 3, b = 15 and ν = 1.

Figure 5.1 shows the approximation behavior of ‖ū− ūh‖L2(Ω). In the figures, ū is denoted by uopt.
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As mentioned in [16], the approximation in the L2-norm is of order h3/2 for the piecewise linear
functions. In contrast to this, the approximation is only of order h for piecewise constant functions,
see also Table 5.1. Figure 5.2 shows the convergence order after the projection. As one can see, the
theoretical predictions are fulfilled and one obtains a quadratic approximation rate for ‖ū−ũ‖L2(Ω).

Table 5.1

piecewise linear (discontinuous) piecewise constant
Nh d.o.f. ||ū − ūh||L2 ||ū − ũ||L2 d.o.f. ||ū − ūh||L2 ||ū − ũ||L2

25 3456 0.07552 0.04866 1058 0.34312 0.04856
50 14406 0.02747 0.01227 4608 0.17124 0.01221
100 58806 0.00758 0.00306 19208 0.08563 0.00306
200 237606 0.00428 0.00076 78408 0.04288 0.00077

Example 2. We consider here the problem

−∆y + cy = u in Ω

∂ny = 0 on Γ (5.2)

where ∂n denotes the normal derivative with respect to the outward normal vector.

The optimal state ȳ = ya − yg is constructed with ya(x1, x2) = cos(πx1) cos(πx2). The function yg

is determined by the equation

−∆yg + cyg = g in Ω

∂nyg = 0 on Γ,

with the inhomogenity

g(x1, x2) =







uf(x1, x2) − a , if uf (x1, x2) < a

0 , if uf (x1, x2) ∈ [a, b]
uf(x1, x2) , if uf (x1, x2) > b
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and uf (x1, x2) = (2π2 + c) cos(πx1) cos(πx2). The optimal control ū is given by the state equation
(5.2)

ū(x1, x2) =







a , if uf(x1, x2) < a

uf(x1, x2) , if uf(x1, x2) ∈ [a, b]
b , if uf(x1, x2) > b.

The optimal adjoint state is defined by

p̄(x1, x2) = −(2π2 + c)ν sin(πx1) sin(πx2).

Moreover, the desired state yd is chosen as

yd(x1, x2) = ȳ + ∆p̄ − cp̄

= ya − yg + (4π4ν + 4π2νc + νc2) sin(πx1) sin(πx2).

Again, it is easy to verify that these functions fulfill the necessary and sufficient first-order opti-
mality conditions. In the numerical tests, we chose a = −3, b = 15 and ν = c = 1.

Figure 5.3 and Figure 5.4 illustrate that the approximation behavior in the example with Neumann
boundary conditions is similar to the example with Dirichlet boundary conditions.
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As one can see in Table 5.2, the absolute error is only slightly reduced by the projection.

Table 5.2

piecewise linear (discontinuous) piecewise constant
Nh d.o.f. ||ū − ūh||L2 ||ū − ũ||L2 d.o.f. ||ū − ūh||L2 ||ū − ũ||L2

25 3750 0.11312 0.10651 1250 0.36168 0.10517
50 15000 0.03121 0.02603 5000 0.17610 0.02632
100 60000 0.00856 0.00655 20000 0.08744 0.00656
200 240000 0.00283 0.00163 80000 0.04366 0.00164

Let us summarize our numerical experiences. The numerical experiments show the expected ap-
proximation rates. However, there are also surprising effects: Although the approximation behavior
for piecewise linear and discontinuous controls is essentially better than for piecewise constant con-
trols, the accuracy after the postprocessing is nearly the same. Therefore, the usage of piecewise
constant controls seems to be more reasonable since the number of unknowns is smaller as for
piecewise linear and discontinuous controls.
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