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Summary. Surface acoustic wave filters are widely used for frequency filtering in
telecommunications. These devices mainly consist of a piezoelectric substrate with
periodically arranged electrodes on the surface. The periodic structure of the elec-
trodes subdivides the frequency domain into stop-bands and pass-bands. This means
only piezoelectric waves excited at frequencies belonging to the pass-band-region can
pass the devices undamped.
The goal of the work presented is the numerical calculation of so-called “dispersion
diagrams”, the relation between excitation frequency and a complex propagation
parameter. The latter describes damping factor and phase shift per electrode.
The mathematical model is governed by two main issues, the underlying periodic
structure and the indefinite coupled field problem due to piezoelectric material equa-
tions. Applying Bloch-Floquet theory for infinite periodic geometries yields a unit-
cell problem with quasi-periodic boundary conditions. We present two formulations
for a frequency-dependent eigenvalue problem describing the dispersion relation.
Reducing the unit-cell problem only to unknowns on the periodic boundary results
in a small-sized quadratic eigenvalue problem which is solved by QZ-methods. The
second method leads to a large-scaled generalized non-Hermitian eigenvalue problem
which is solved by Arnoldi methods.
The effect of periodic perturbations in the underlying geometry is confirmed by nu-
merical experiments. Moreover, we present simulations of high frequency SAW-filter
structures as used in TV-sets and mobile phones.

Key words: piezoelectric effect, periodic structures, Bloch theory, eigenvalue
problems

1 Introduction

This work deals with mathematical modeling and numerical simulation of
periodic piezoelectric Surface Acoustic Wave filters (briefly SAW-filters) and
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results in the computation of so-called “dispersion diagrams”. We focus on
surface acoustic wave devices used for frequency filtering in wireless communi-
cation such as standard components in TV-sets and cellular phones. However,
there are many other application fields of SAW-devices as in radar and sensor
technology and non-destructive measurement.

A SAW filter consists of a piezoelectric substrate onto whose surface electrode
structures are evaporated. We want to concentrate on analyzing frequency
filtering effects caused by the periodic arrangement of the electrodes. In prac-
tical periodic SAW-filters one arranges some hundreds up to some thousands
of electrodes periodically in order to gain the so-called stop-band phenom-
ena. The nature of periodic structures prohibits the propagation of SAWs
excited in several frequency ranges. The frequency domain is classified into
pass-bands, i.e. frequencies for which excited surface waves get through the
periodic piezoelectric device, and stop-bands, i.e. frequencies which cannot
pass trough. Therefore, the piezoelectric device can be used for frequency fil-
tering.

A fundamental and recommendable introduction to acoustic field problems,
various (surface) wave modes and piezoelectricity is provided by Auld in [3].
The numerical solution of piezoelectric systems via the Finite Element Method
is treated e.g. by Lerch in [16]. An overview of the historical development
of SAW-devices is given in [19]. The principles of periodic SAW-devices are
treated in some IEEE papers like [12], however, in most of them only pure-
propagating modes are simulated.
The mathematical justification for the quasi-periodic field distribution is given
by Bloch-Floquet theory, which analyzes the spectral properties of ordinary
and partial differential operators on periodic structures. This theory was de-
veloped by Bloch for solving special problems in quantum mechanics, where
one deals with periodic Schrödinger operators, and by Floquet for ordinary
differential equations. A description by physicists can be found in Madelung
[17] and in Ashcroft and Mehrmann [2]. A functional analytic approach is
provided by Simon and Reed [20]. The generalization to partial differential
equations with periodic coefficients was done by Bensoussan, Lions and Pa-
panicolaou in [6] for real and elliptic problems and by Kuchment [13], who
applied the theory to scalar equations on photonic and acoustic band-gap de-
vices in [4].
Bloch-Floquet theory states that the solution on periodic structures can be
decomposed into quasi-periodic functions, so-called Bloch waves. Therefore
the problem can be restricted to the unit-cell, i.e. the domain including one
electrode. Successive arrangement of this unit-cell yields the original geometry.
In order to describe the original periodic system, appropriate quasi-periodic
boundary conditions have to be established.
The unit-cell problem turns out to be a coupled-field eigenvalue problem de-
pending on either the frequency or the complex propagation constant. The
numerical solution requires discretization, which is done by the Finite Ele-
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ment Method (FEM), and the application of an eigenvalue solver. We intro-
duce step-by-step the mathematical tools for handling periodic structures, i.e.
formulating and incorporating appropriate boundary conditions and corre-
sponding discretization methods.
We begin with the scalar wave problem and establish three different solu-
tion methods for computing the dispersion diagram. All these methods result
in non-Hermitian eigenvalue problems of linear or quadratic form. Applying
the established methods to periodic structures on piezoelectric problems is for-
mally equivalent to the scalar wave model problem. However, the matrices get
indefinite and worse conditioned due to piezoelectric properties, which requires
special numerical treatment. Mathematical modeling results in two reasonable
versions of frequency-dependent eigenvalue problems, one of quadratic form
and the other one of generalized linear form. This requires special theory and
numerics of algebraic eigenvalue problems.
In [5] a recommendable collection of state-of-the-art direct and iterative meth-
ods for large-scale eigenvalue problems is given. The book includes improved
algorithms and implementational details. Tisseur [23] specializes on quadratic
eigenvalue problems and Lehouqh [14] on Arnoldi and Implicit Restarted
Arnoldi Methods (IRAM). A collection of structure-preserving methods is
provided in [8].
The stated eigenvalue problems are solved numerically by our open-source
high-order Finite Element solver NGSolve [22] in combination with the mesh
generator Netgen [21]. For solving the occurring eigenvalue problems we link
the software packages LAPACK [1], providing direct methods, and ARPACK
[9], providing Implicit Restarted Arnoldi methods.

The main goal of this paper is the detailed derivation of a mathematical model
for surface wave propagation in periodic piezoelectric structures including nu-
merical solution methods and simulation of practical filter structures. The
paper is organized as follows. We start with the technical details of surface
acoustic wave filters including some first model assumptions, which are based
on physical considerations, in Section 2. An introduction to piezoelectric equa-
tions is given in Section 3. To gain a detailed mathematical modeling we treat
the two main subproblems separately, those are wave propagation in periodic
media and the piezoelectric coupled field problem. In Section 4 we derive math-
ematical tools and solution strategies for the dispersion context of a scalar
model problem with periodic coefficients. Section 5 starts with mathematical
tools for the piezoelectric coupled field equations and results in combining the
solution methods derived in 4 to piezoelectric equations. Numerical results
are presented in Section 6. First, the effect of periodic perturbations in the
underlying geometry is confirmed. Secondly, we present simulations of a high
frequency SAW-filter structures as used in TV-sets or GSM-mobile phones.
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2 Problem description and first model assumptions

2.1 Surface acoustic wave filters

We study a piezoelectric surface acoustic wave (SAW, Rayleigh-wave) device
as used for frequency filtering in telecommunications. The main components
of such devices are a piezoelectric substrate and two interdigital transducers
(IDT) (see Figure 1). Such an IDT is a comb of electrodes evaporated on the
top surface of the piezoelectric crystal. Due to the underlying piezoelectric
substrate an IDT transforms an alternating voltage into mechanical deforma-
tions. An acoustic wave can be excited. Vice versa, mechanical vibrations of
the substrate evoke surface charges on the electrodes. An electric signal can
be measured at the receiving IDT.
We focus on periodic SAW-filters where frequency filtering is achieved by peri-

Surface Acoustic Wave (SAW) Filter

Mechanical displacements:

Li Nb 0
Center frequency:
30 MHz - 3 GHz

3

Fig. 1. Principal SAW filter consisting of piezoelectric substrate and input/output
IDTs [15]

odic arrangement of electrodes on the surface of the piezoelectric substrate. If
an acoustic wave propagates on the surface through the periodic structure, it
is partially reflected at each electrode. Depending on the excitation frequency
of the acoustic wave the reflected parts interfere constructively or not. If there
is huge number of electrodes and the reflections interfere constructively, the
wave propagation is prohibited, although the reflections at each electrode are
very small. This effect occurs in whole frequency bands, so called band-gaps
or stop-bands.
Numerical simulation of the full three-dimensional device is not reasonable.
We already perform some model reduction on the geometric domain based on
physical considerations: We denote the direction of periodicity by (x1), the
surface normal direction by (x2) and their perpendicular direction by (x3).
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The dimensional extension of electrodes in (x3)-direction is huge in compari-
son to the periodicity. Moreover, we assume homogenous material topology in
(x3)-direction. We are mainly interested in the propagation of Rayleigh-waves
and their interaction with the periodic structure. These waves live near the
surface, the amplitude decreases rapidly within depth and becomes negligibly
small within the depth of a few wavelengths.
In general, surface waves are three-dimensional, but the relevant Rayleigh-
waves depend only on the sagittal plane, i.e. the plane spanned by the direc-
tion of propagation and the surface normal. Thus, the mechanical and electric
fields only depend on x1 and x2 coordinates. We can restrict the computa-
tional geometry to two dimensions.

In practical SAW devices the IDTs consist of some hundreds up to some thou-
sands of electrodes. Therefore, extending the electrodes periodically to infinity
is a suitable approximation.
We choose the infinite 2-dimensional domain which is periodic in x1-direction
to model the piezoelectric substrate with a huge amount of periodically ar-
ranged electrodes. See Figure 2.

piezoelectric substrate

period p

electrodes

x

y

Fig. 2. 2D periodic geometry

2.2 Quasi-periodic wave propagation and the dispersion diagram

As we will see in Section 4.1 and 5.4 the mechanical deformation u(x, t) and
the electric potential Φ(x, t) of surface acoustic waves can be decomposed into
Bloch-waves in periodic structrues. These quasi-periodic waves are of the form

u(x, t) = eiωte(α+iβ)xup(x), Φ(x, t) = eiωte(α+iβ)xΦp(x)

with the p-periodic functions up, Φp. The wave-propagation can be described
by the functional context between the frequency ω and the propagation pa-
rameter α + iβ, which is of great interest for engineers designing SAW-filters.
The aim of this work is the full calculation of the dispersion diagram, which
gives the relation between ω, and the attenuation α and the phase shift β in
each periodic cell.
We can observe several wave modes in the dispersion diagram (see Figure 3):
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Fig. 3. Dispersion diagram: structure with periodical arranged electrodes

Surface waves belonging to pass- and stop-bands, but also bulk waves which
are volume waves. For surface wave propagation the frequency domain is clas-
sified in pass-bands and stop-bands as follows:
Wave propagation occurs below the lower stop-band edge ω1. Surface waves
can pass the periodic structure undamped, i.e. they belong to the pass-band.
For stop-band frequencies ω ∈ (ω1, ω2) the wave reflections occurring at
each electrode, interfere constructively. The wave gets exponentially damped
(α 6= 0).
Above a certain frequencies ωc also bulk waves are excited by IDTs. A small
damping coefficient α is introduced, by the lack of energy into the material
caused by bulk waves. This effect is called “bulk wave conversion” and can
only be simulated if the model includes wave absorption of the material.
The green-doted straight line in Figure 3 shows the dispersion context in
homogenous materials, where no stop-band effects occur since there are no
interfering reflections.

3 The piezoelectric equations

Piezoelectric materials are characterized by the following two effects: The di-
rect piezoelectric effect states that a mechanical deformation of a piezoelectric
substrate evokes an electric field, which can be measured by charges on the
surface. The effect is reversible: A piezoelectric crystal shrinks or stretches, if it
is exposed to an electric field (converse piezoelectric effect). These phenomena
result from special asymmetries occurring in some crystalline materials (e.g.
in quartz by nature or in industrial produced ceramics). These effects cannot
exist in isotropic media, i.e. piezoelectric materials are always anisotropic. To
gain the piezoelectric equations we have to combine electrostatics and elasto-
dynamics. We state the equations in the three-dimensional space.
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Elasticity

For an impressed volume force density f(x) the elastic equation of motions
states that the mechanical displacement u and the mechanical stresses T are
related as

∂2u

∂t2
(x, t) − divxT = f(x). (1)

The elastic strains S are defined by the geometrical properties

S =
1

2
(∇u + (∇u)t). (2)

Electrostatics

The electric field intensity E can be expressed by an electric potential Φ as

E = −∇Φ. (3)

Piezoelectric materials are insulators, i.e. there are no free volume charges.
Therefore electrostatics gives

−divD = 0 (4)

for the dielectric displacement vector D.

Piezoelectric material laws

We assume a linear piezoelectric coupling of elastic and electric fields, since
nonlinear coupling terms are negligibly small. Extending Hook’s law and the
electrostatic equation for the dielectric displacement by the direct or respec-
tively the converse piezoelectric effect yields

Tij = cijklSkl − ekijEk ,

Di = eijkSjk + εikEk,
(5)

where c denotes the mechanical stiffness tensor, ε the dielectric permittivity
tensor, e the piezoelectric coupling coefficient tensor.
We point out that the mechanical stiffness matrix and the permittivity ma-
trix are symmetric. Since the direct and converse piezoelectric effect are sym-
metric, the coupling coefficients are equal for both effects. Due to symmetry
considerations we can reduce the four material tensors: c to a 6×6 symmetric
matrix, ε to a 3 × 3 symmetric matrix and e to a 6 × 3 matrix. We refer the
interested reader to [3] for more details on piezoelectric equations.
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4 A scalar model problem

To get a better insight into the problem of wave propagation in periodic
media and to construct methods for the computation of dispersion diagrams
we start with a scalar model problem. We consider the scalar wave equation
with periodic coefficients. By the periodic arrangement of the cells Ω

p
k =

[kp, (k + 1)p] × [0, H ] we derive the strip Ω :=
⋃∞

k=−∞ Ω
p
k , which is periodic

in (x1). This will be the underlying geometry modeling the infinite periodic
domain. See Figure 4. We search for general solutions u(x, t) of the scalar
wave equation

∂2u
∂t2

(x, t) − divx(a(x)∇xu(x, t)) = 0 on Ω,

a(x) ∂u
∂n

(x, t) = 0 on ΓN ,

u(x, t) = 0 on ΓD .

(6)

Since we are interested in the structure of the solution space, we state no
initial conditions. The positive coefficient function a describes the periodical
properties of the material in x1-direction, i.e.

a(x1 + p, x2) = a(x1, x2) ∀ (x1, x2) ∈ Ω. (7)

The classical formulation requires higher regularity on the coefficients and on
the solutions. With regard to the weak formulation derived later we assume
the periodic coefficient a to be positive and piecewise constant. Moreover, the
arrangement of ΓN and ΓD is assumed to coincide with the periodic nature of
the domain, as shown in Figure 4. Note that we state no radiation conditions
in x1-direction.
We can separate the time-dependency by shifting the problem to the fre-

Fig. 4. Infinite periodical cluster 2D (Ω)

quency domain. Therefore, we apply the time-harmonic ansatz

û(x, t) = û(x) eiωt. (8)

Form now on we suppress the hat-marker for the complex function û(x) ≡
u(x) and agree that to obtain physical results we have to consider the real
parts afterwards. The wave-equation (6) transforms to the following eigenvalue
problem with periodic-coefficient a(.):

Find the complex-valued eigensolutions u and eigenvalues ω ≥ 0 of

−div(a(x)∇u(x)) = ω2u(x) ∀x ∈ Ω. (9)
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4.1 Bloch’s theorem and the quasi-periodic unit-cell problem

The problem above states an eigenvalue problem with periodic coefficients in
an unbounded domain. Bloch-Floquet theory deals with the analysis of partial
differential operators with periodic coefficients.
Bloch-theorem on the spectra of periodic operators
We assume the Hermitian partial differential operator
A : C2(Ω, C) → C(Ω, C) to be invariant w.r.t. translations Tp of length p in
x1-direction, i.e.

TpA = ATp with Tp : f(., .) → f(. + p, .) .

For every m-dimensional eigenspace EA(λ) := {v|Av = λv}, there exists a set
of Bloch waves (ϕi)1≤i≤m spanning EA(λ), i.e. satisfying

Aϕj = λϕj and ∃αj , βj ∈ R : Tpϕj = e(αj+iβj)pϕj . (10)

Lions [6] deals with elliptic operators, but restricts the solution space to the
case α = 0. The general case is treated in Kuchment [13].
Our problem requires the calculation of Bloch waves solving (9), which are
assumed to be quasi-periodic in x1-direction,

∃α, β ∈ R ∀ (x1, x2) ∈ Ω : u(x1, x2) = up(x1, x2)e
(α+iβ)x1 (11)

with up being periodic, i.e. up(x1 + p, x2) = up(x1, x2) ∀ (x1, x2) ∈ Ω,
or equivalently

∃α, β ∈ R ∀ (x1, x2) ∈ Ω : u(x1 + p, x2) = u(x1, x2)e
i(α+iβ)p. (12)

Apparently quasi-periodic Bloch waves are fully described by

• a periodic function up(·),
• the complex propagation constants α + iβ.

Bloch’s theorem justifies a reduction of the infinite problem to one single
cell. We choose Ω

p
0 and refer to the quasi-periodicity of the Bloch-waves by

introducing quasi-periodic boundary conditions on the interfaces
ΓL = ∂Ω

p
−1 ∩ ∂Ω

p
0 , ΓR = ∂Ω

p
0 ∩ ∂Ω

p
1 .

We state the quasi-periodic unit-cell problem in strong form as

−div(a∇u) = ω2u in Ω
p
0 (13)

u = 0 on Γ0,D (14)

a
∂u

∂n
= 0 on Γ0,N (15)

γ u(x1, x2) = u(x1 + p, x2) for (x1, x2) ∈ ΓL (16)

−γ a(x1, x2)
∂u

∂nl

(x1, x2) = a(x1 + p, x2)
∂u

∂nr

(x1 + p, x2)

for (x1, x2) ∈ ΓL,

(17)
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where γ := e(α+iβ)p and nl,nr denote the outer normal vectors on ΓL and ΓR,
respectively.

4.2 The mixed variational formulation

The variational formulation includes the real-valued or complex-valued Sobolev-
spaces
H1(Ωp

0 ) := {u |
∫

Ω
p
0

|u|2 dx +
∫

Ω
p
0

|∇u|2 dx < ∞} and

H1
0,D(Ωp

0 ) := {u ∈ H1(Ωp
0 ) |u = 0 on ΓD}.

The weak formulation of (13)-(15) in H1
0,D gives

∫

Ω
p
0

∇u∇v dx − ω2
∫

Ω
p
0

uv dx +
∫

ΓL
a ∂u

∂n
v ds +

∫

ΓR
a ∂u

∂n
v ds = 0,

where we assume a ∈ L∞(Ωp
0 ). The incorporation of the quasi-periodic bound-

ary conditions (16)–(17) is done by a mixed formulation. First, we identify ΓR

and ΓL by a reference boundary Γ . Secondly, we define the trace-operators
for the restriction of left and right boundary, but with respect to the reference
boundary Γ , especially the superposition of the trace operator on Γl or Γr

and the identification of the boundaries with Γ :

trl : H1(Ω) → H
1

2 (Γ )
u 7→ ul

,
trr : H1(Ω) → H

1

2 (Γ )
u 7→ ur

.

Thirdly, by introducing a new unknown for the normal-derivative with respect
to Γ

λ := a
∂u

∂nl

∈ H− 1

2 (Γ )

we can reformulate the weak formulation of (13)–(17) as non-symmetric
mixed variational formulation on the unit cell:

Find (u, λ) in H1(Ω) × H− 1

2 (Γ ) such that

∫

Ω
p
0

a∇u∇v dx − ω2
∫

Ω
p
0

uv dx + < trlv − γ trrv, λ > = 0 ∀v ∈ H1(Ω),

< trru− γ trlu, µ > = 0 ∀µ ∈ H− 1

2 (Γ ).
(18)

We used the duality product on Γ denoted by < ., . >:=< ., . >
H

1
2 (Γ )×H

−

1
2 (Γ )

.

For regular functions this coincides with the L2-inner-product.
The normal derivative λ takes the role of a Lagrange-parameter.

4.3 The frequency-dependent eigenvalue problem

In the mixed variational problem (18) we are interested in possible solutions
(u, λ) in combination with the parameter-dependence on ω and γ. There are
two possibilities to extract a parameter-dependent eigenvalue problem :
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1. Find all eigensolutions (u, λ) of (18) with positive eigenvalues ω2 depend-
ing on the parameter γ. If we want to calculate the whole dispersion con-
text, the EVP has to be stated depending on a complex parameter (α+iβ),
i.e. two real parameters. This approach is suitable if we state the problem
only for pass-bands i.e. γ = eiβ .

2. Find all eigensolutions (u, λ) of (18) with eigenvalues γ ∈ C depending on
the real-valued frequency ω. Since we are interested in general complex-
propagation parameters α + iβ, we choose this frequency-dependent ap-
proach.

Defining the frequency-dependent bilinear form

kω(u, v) :=

∫

Ω
p
0

a∇u∇v dx − ω2

∫

Ω
p
0

uv dx, (19)

we get an abstract version of the non-symmetric frequency-dependent
eigenvalue-problem for the quasi-periodic unit-cell problem:

Find eigenfunctions (u, λ) ∈ H1
0,D(Ωp

p) × H− 1

2 (Γ ) referring to the eigen-
value γ ∈ C

kω(u, v) + < (trl − γ trr)v, λ > = 0 ∀v ∈ H1
0,D(Ωp

0)

< (trr − γtrl)u, µ > = 0 ∀µ ∈ H− 1

2 (Γ )
(20)

dependent on the frequency ω ∈ R+.

4.4 Galerkin-discretization of the frequency-dependent EVP

We assume a Galerkin-discretization Vh ⊂ H1
0,D(Ωp

0 ) by H1-conforming Finite

Elements. The choice of a Finite Element base for H− 1

2 (Γ ) is more challenging.
If we consider a general discretization of the right and the left boundary we
are faced with the discretization of the dual space for the Lagrange-multiplier.
This can be done by Mortar Finite Elements as suggested in [24], [7].
If we use periodic meshes, in the sense that the left and the right boundary
are discretized equivalently, we can avoid the assembling of the FE-space for
the Lagrange-parameter and simply use nodal constraints on the boundary.
In that case, the degrees of freedom are directly connected and so the discrete
matrices of the trace-operators are simply identity matrices.
We define the discretized system matrix Kω := [Kω,jk] == [kω(ϕk, ϕj)] for an
H1-conforming Finite Element base {ϕj} spanning Vh. The FE-discretization
of (20) reads as

(

Kω Tr t
l

Trr 0

) (

uh

λh

)

= γ

(

0 Tr t
r

Trl 0

) (

uh

λh

)

. (21)

We classify the degrees of freedom corresponding to the left (l), the right (r)
boundary, and the remaining ones (“inner” dofs, i). The dimensions nl = nr,
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ni are defined coinciding with this classification and dim(Vh) =: n = ni+2·nl.
Considering the sparsity and the symmetry of the FE-matrices we arrive at
a parameter-dependent discretized generalized eigenvalue-system of
the following structure:









Kω, ii K T
ω, li K T

ω, ri 0

Kω, li Kω, ll 0 I

Kω, ri 0 Kω, rr 0
0 0 I 0

















ui

ul

ur

λ









= γ









0 0 0 0
0 0 0 0
0 0 0 I

0 I 0 0

















ui

ul

ur

λ









. (22)

Remark 1. The generalized eigenvalue problem Ax = γBx defined in (22) has
the following properties:

1. The right hand side matrix B has a large kernel (dim(kerB) = ni + nl),
which corresponds to infinite eigenvalues. There are ni + nl infinite and
2nl finite eigenvalues.

2. The eigenvalue-problem is symplectic, i.e. if γ is an finite non-zero eigen-
value then 1

γ
is also an eigenvalue. One can exploit and preserve the spe-

cial structure by using structure-preserving computational methods as
proposed by Mehrmann in [18].

3. Concerning dispersion diagrams we are mainly interested in eigenvalues
γ = e(α+iβ)p near the unit-circle, i.e. |γ| ≈ 1.

4.5 A model improvement by absorbing boundary conditions

So far we have used standard boundary conditions on the bottom boundary of
the cell. Since we are interested in surface effects, we do not want to simulate
the whole thickness of the underlying substrate, we cut off the domain a few
wavelengths away from the surface. The assumption of Dirichlet or Neumann
boundary conditions is not suitable, since these types of artificial boundary
introduce unnatural reflections. Moreover, damping effects in surface waves,
caused by bulk wave radiation effects, are only possible in models including
wave absorption into the substrate. These reflections can be avoided or at
least minimized by the choice of absorbing boundary conditions (ABCs).

First order absorbing boundary conditions are introduced by complex-
valued frequency-dependent Robin boundary conditions of the form

nT (a∇u) = iωu on Γbot.

This condition is exact for plane waves in outer normal direction n, but still
leads to partial reflections for general plane waves. This approach leads to the
complex-symmetric bilinear form

kABC

ω (u, v) :=

∫

Ω
p
0

a∇u∇v dx + iωc(u, v) − ω2

∫

Ω
p
0

uv dx (23)

with c(u, v) :=
∫

Γbot
uv ds.
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Quite recently the method of perfectly matched layers (PML) became
very popular. We do not want to go into a detailed description of this method.
In order to construct solution methods which can be also applied to PML
boundaries, we only point out its effect on the structure of the corresponding
bilinear form kω. Technically one introduces an artificial boundary layer in
which the coefficients of the underlying PDE are extended into the complex
plane. On the infinite level PML perfectly absorbs plane waves in any arbitrary
direction. On the discrete level the quality of absorption can be controlled by
the choice of the FE-discretization. By this approach the bilinear form extends
to

kPML

ω (u, v) :=

∫

Ω
p
0

ã∇u∇v dx − ω2

∫

Ω
p
0

ρ̃uv dx (24)

with complex-valued parameters ã and ρ̃. This bilinear form is again complex-
symmetric.

Remark 2. By the choice of the proposed ABCs, the system-matrix Kω in
the generalized algebraic EVP (22) gets complex-valued and is complex-
symmetric.

4.6 Solution strategies

In this section we want to construct two strategies for the solution of the
generalized algebraic EVP (22) for complex-valued and complex-symmetric
matrices Kω.
We state two reduced eigenvalue problems which still have the same finite
spectrum as the initial system. This is achieved by reducing infinite eigenvalues
resulting from the large kernel of the right-hand-side matrix in (22).

The Inner-Node-Matrix method

We use the classification in inner (i), left (l) and right (r) degrees of freedom.
Substituting first ur = γul and then λ = −Kω, liui − Kω, llul leads to a
generalized non-Hermitian linear eigenvalue problem of the form

(

Kω, ii Kω, il

K T
ω, ir 0

) (

ui

ul

)

= γ

(

0 −Kω,ir

−K T
ω,il −Kω,ll − Kω,rr

) (

ui

ul

)

. (25)

We point out that in the above problem none of the two matrices is regular
nor symmetric, but by spectral transformation coinciding with µ := 1

γ−1 we
get the following equivalent problem:

Find eigenvectors

(

ui

ul

)

∈ Cni+nl w.r.t. the eigenvalues µ = 1
γ−1 :

(

0 −Kω, ir

−K T
ω,il −Kω,ll − Kω,rr

) (

ui

ul

)

= µ

(

Kω, ii Kω,il + Kω,ir

K T
ω,ir + K T

ω,il Kω,ll + Kω,rr

) (

ui

ul

)

.

(26)
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The right-hand-side matrix is obviously regular and complex-symmetric.
Moreover, all involved matrices are sparse.
An implementation of the implicitly restarted Arnoldi-algorithm is provided
by the software-package ARPACK. The package includes an iterative solver for
generalized non-Hermitian eigenvalue Av = γBv which only requires matrix-
vector products and the application of the inversion. Therefore, the sparsity of
the FE-matrices can be exploited. In each frequency step we have to perform
a Sparse-Cholesky factorization of B.

The Schur-complement method

We start with the already reduced system stated in (25) and take the Schur-
complement with respect to the inner degrees of freedom. We state the Schur-
complement of Kω as

S := −
(

Kω,li, Kω,ri

)

K−1
ω,ii(Kil − γKir) +

(

Kω,ll 0
0 Kω,rr

)

. (27)

Substituting ui by ui = −Kω, ii−1(Kil − γKir)ul in (25) we result in the
following frequency-dependent quadratic eigenvalue problem:

Find eigenpairs (γ, ul) ∈ C × Cnl such that

γ2Slrul + γ(Sll + Srr)ul + S T
lr ul = 0. (28)

In each frequency step we first calculate the inverse of the sparse and complex-
symmetric matrix K−1

ω,ii by a Sparse-Cholesky-factorization and assemble the
Schur-complement. The quadratic eigenvalue problem is tackled by lineariza-
tion to a double-sized generalized eigenvalue problem, which is solved by the
QZ-method implemented in LAPACK.

5 Piezoelectric equations and periodic structures

In this section we want to combine the three main modeling steps,

• the underlying piezoelectric equations, which lead to a coupled field prob-
lem of saddle-point structure (indefinite, but symmetric),

• absorbing boundary conditions for acoustic waves in piezoelectric media
in order to enable wave absorption of the substrate,

• acoustic wave propagation in periodic structures and its solution strategies.

Here, mathematical modeling, analysis and solution strategies get more tech-
nical due to the governing piezoelectric equations. One has to overcome some
problems due to the indefinite saddle-point structure of piezoelectric equa-
tions. But the quasi-periodic problem results in a formally equivalent eigen-
value problem, which can be solved numerically with the methods introduced
above.
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5.1 2d geometry and anisotropic materials

At first, we adopt the three-dimensional piezoelectric equations given in (1)–
(5) to the fact that surface waves only depend on the sagittal plain. This
was the justification to reduce the geometry to the plain spanned up by the
direction of surface wave propagation (x1) and the normal onto the surface
(x2). Due to the anisotropic properties of the material general surface waves
can polarize (particle motion) outside the sagittal plane. Even though all field
quantities only depend on the (x1, x2)-plane, a mechanical deformation in
(x3)-direction is possible. Therefore, the equations for the elastic strain (2)
and the electric field (3) simplify to

S(u) =
1

2

(

∇(x1,x2,x3)u(x1, x2) +
(

∇(x1,x2,x3)u(x1, x2)
)t

)

, (29)

E = ∇(x1,x2,x3)Φ(x1, x2) =

(

∂Φ

∂x1
,

∂Φ

∂x2
, 0

)t

. (30)

From now on we denote the equations (1),(29),(3),(29),(4) as the governing
piezoelectric equations for the three-dimensional mechanical displacement u =
(u1, u2, u3)

t and the scalar potential Φ.

5.2 The underlying infinite periodic piezoelectric problem

The cell-based periodic model geometry

The periodic geometry Ω can be described in terms of successive arrangement
of a unit-cell Ω

p
0 (with diamx1

(Ωp
0 ) = p) of an analogous structure as shown

in Figure 5. We denote the translation of this cell parallel to the x1-axis as the
k-th cell Ω

p
k := Ω

p
k := {y = (k.p, 0) + x|x ∈ Ω

p
0} and achieve a representation

of an infinite periodic strip Ω by Ω :=
⋃∞

k=−∞ Ω
p
k .

Each cell basically consists of a piezoelectric substrate Ωk,S with one evap-
orated electrode Ωk,E ; these two domains are disjoint but matching. In nu-
merical computation we will choose the model geometry shown in Figure 4.

ΩΩ 0,S S

bot,0Γ

ΓrΓl

Ω E0, Ω E

p

topΓ

botΓ

p

p

p

The infinite periodic strp ΩThe unit−cellΩ 0
p

0Γ , top

Fig. 5. Underlying cell-based periodic geometry
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The piezoelectric equations with periodic coefficients on Ω

Shifted to the frequency domain by a harmonic ansatz, the piezoelectric equa-
tions for the mechanical displacement (u1, u2, u3) and the scalar potential Φ

are

−div
(

c :
(

∇u + (∇u)t
)

+ ε : ∇Φ
)

= ω2ρu in Ω,

−div
(

et :
(

∇u + (∇u)t
)

− ε : ∇Φ
)

= 0 in Ω,
(31)

with underlying periodic structure Ω and periodic coefficient matrices Tpc =
c, Tpe = e, Tpρ = ρ. On the metallic electrodes ΩE the piezoelectric coupling
coefficient e is set to zero. Concerning the boundary conditions we choose
homogenous Dirichlet boundary condition for the potential on ΓE := ∂Ω ∩
∂ΩE =: ΓD in order to model short-circuited electrodes. The remaining top-
surface boundary is assumed to be charge-free. Concerning the mechanical
field the whole top-surface boundary is assumed to be stress-free. Therefore,
the following boundary conditions are claimed for (31)

short-circuited electrodes Φ = 0 on ΓE := ∂Ω ∩ ∂ΩE ,

stress-free: nt.T = 0 on Γtop,

charge-free: nt.D = 0, on Γtop\ΓE .

(32)

Absorbing BCs on Γbot (33)

with normal stresses nt.T := nt
(

c :
(

∇u + (∇u)t
)

+ e : ∇Φ
)

and normal charges nt.D := nt
(

et :
(

∇u + (∇u)t
)

− ε : ∇Φ
)

.
Solving the periodic problem again requires the computation of Bloch waves.
Therefore, it can be restricted to a piezoelectric unit-cell problem with quasi-
periodic boundary conditions for mechanical and electric field quantities.
Analogous to the scalar model, we begin with the mathematical tools required
for the piezoelectric unit-cell problem with standard-boundary conditions. The
incorporation of the quasi-periodicity will be done in the second step.
For sake of simplicity we assume the charge- and stress-free boundary condi-
tions

nt.T = 0, nt.D = 0 on Γbot (34)

on the bottom boundary in the first stage of modeling.

5.3 Piezoelectric equations in weak and discretized form

Restriction of the time-harmonic piezoelectric equations stated in (31),(32),(34)
onto the unit-cell Ωp

o and its weak formulations yields the following eigenvalue
problem:

Find eigensolutions (u, Φ) ∈
[

H1(Ωp
0 )

]3
× H1

0,D(Ωp
0 ) corresponding to the

eigenvalues ω2 such that ∀ v ∈ H1(ΩP
0 )3 :=

[

H1(ΩP
0 )

]3
, ∀Ψ ∈ H1

0,D(Ωp
0 )

∫

Ω
p

0

(Bv)T : c Bu +
∫

Ω
p

0

(S(v))t : et∇Φ dx = ω2
∫

Ω
p

0

ρ vtu dx
∫

Ω
p
0

(∇Ψ)t : e Bu dx −
∫

Ω
p
0

(∇Ψ)t ε∇Φ dx = 0
(35)
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Due to the large kernel in the right hand side the eigenvalue problem is de-
generated, which leads to infinite eigenvalues.
For the sake of simplicity we introduce the mechanical bilinear form

auu(u, v) :=
∫

Ω
p

0

S(v)t : c S(u) dx,

the piezoelectric coupling bilinear forms

auΦ(u, Φ) = aΦu(Φ, u) :=
∫

Ω
p
0

St(u) : et∇Φ dx,

the dielectric bilinear form

aΦΦ(Φ, Ψ) =
∫

Ω
p
0

(∇Ψ)t ε∇Φ dx,

and the mechanical mass bilinear form

muu(u, v) :=
∫

Ω
p
0

ρ vtu dx.

On the structure of piezoelectric discretized eigenvalue-problems

The discretization of H1(Ωp
0 )3 and H1(Ωp

0 ) with conforming Finite Elements
yields a algebraic eigenvalue-problem of the special saddle-point structure

(

Auu AuΦ

AΦu −AΦΦ

) (

uh

Φh

)

= ω2

(

Muu 0
0 0

) (

uh

Φh

)

. (36)

The matrix blocks correspond to the mechanical, dielectric and piezoelectric
bilinear forms. Therefore, the problem is symmetric since the sub-matrices
satisfy Auu = At

uu, AΦΦ = At
ΦΦ, AΦu = At

uΦ, Muu = M t
uu. The eigenvalue

problem is degenerated. It possesses dim(Φh) infinite eigenvalues.
The Schur-complement with respect to the potential Φh yields

(

Auu + AuΦA−1
ΦΦAΦu

)

uh = ω2Muuuh,

which states a positive-definite eigenvalue problem. However, we will not pur-
suit this strategy, due to the computational costs for inverting AΦΦ.

5.4 The quasi-periodic unit-cell problem

Due to Bloch’s theorem (general version stated in [13]) we use Bloch waves

u(x1, x2) = up(x1, x2)e
(α+iβ)x1 with up p − periodic in x1

Φ(x1, x2) = Φp(x1, x2)e
(α+iβ)x1 with Φp p − periodic in x1

as ansatz for the eigenfunctions in the periodic piezoelectric eigenvalue prob-
lem (31)–(32) together with either (33) or (34).
Therefore, the quasi-periodic unit-cell problem is stated by (31),(32),
and (33) or (34) restricted onto Ω

p
0 together with the quasi-periodic bound-

ary conditions
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γ u(x1, x2) = u(x1 + p, x2) for (x1, x2) ∈ ΓL,

−γ nt · T (x1, x2) = nt · T (x1 + p, x2) for (x1, x2) ∈ ΓL,

γ Φ(x1, x2) = Φ(x1 + p, x2) for (x1, x2) ∈ ΓL,

−γ nt · D(x1, x2) = nt · D(x1 + p, x2) for (x1, x2) ∈ ΓL,

(37)

with γ := e(α+iβ)p.
Now, the solution strategy is formally equivalent to that presented for the
scalar model problem. We interpret the quasi-periodic unit-cell problem as
eigenvalue-problem for the propagation-constant γ while depending on the
frequency ω.
We identify the quasi-periodic boundaries Γl and Γr with a reference boundary
Γ . The corresponding trace operators trl and trr are defined as the compo-
sition of the standard H1-trace operator onto ΓL and the boundary iden-

tification of Γl or Γr with Γ : trl : H1Ω0
p → H

1

2 (Γl)
id
→ H

1

2 (Γ ), and vice
versa for trr. The trace-operator on the three-dimensional mechanical field
u in H1(Ωp

0)3 is defined component-wise as trlu := (trlu1, trlu2, trlu3) in

H
1

2 (Γ )3 := [H
1

2 (Γ )]3 Furthermore, by introducing new unknowns for the
normal fluxes on the left boundary with respect to Γ

λ := nt · T ∈ H− 1

2 (Γ )3 and ζ := nt · D ∈ H− 1

2 (Γ ), (38)

we result in the frequency-dependent mixed variational formulation:

Find eigensolutions (u, Φ, λ, ζ) corresponding to eigenvalues γ ∈ C

with (u, Φ, λ, ζ) ∈ H1(Ωp
0)3 × H1

0,D(Ωp
0) × H− 1

2 (Γ )3 × H− 1

2 (Γ ) such

that ∀ v ∈ H1(Ωp
0 )3, ∀Ψ ∈ H1

0,D(Ωp
0 ), ∀µ ∈ H− 1

2 (Γ )3, ∀ ν ∈ H− 1

2 (Γ )

auu(u, v) + auΦ(Φ, v) − ω2m(u, v) + < (trl − γ trr)v, λ > = 0

aΦu(u, Ψ) − aΦΦ(Φ, Ψ) + < (trl − γ trr)Ψ, ζ > = 0

< (γ trl − trr)u, µ > = 0

< (γ trl − trr)Φ, ν > = 0

(39)

is satisfied for given parameters ω2.
The duality-product < ., . > refers to < ., . >

H
1
2 (Γ )3×H

−

1
2 (Γ )3

or < ., . >
H

1
2 (Γ )×H

−

1
2 (Γ )

respectively.

Again, the introduced unknowns λ, ζ for the normal fluxes on Γl with respect
to Γ take the role of Lagrange-multipliers.

To gain a compact formalism we use the abbreviations ũ := (u, Φ) ∈
H1

0,D4
(Ωp

0 )4 := H1(Ωp
0 )3 × H1

0,D(Ωp
0 ), and ṽ := (v, Ψ), and on the frequency-

dependent piezoelectric bilinear form
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kω(ũ, ṽ) := kω
(

(u, Φ), (v, Ψ)
)

:= auu(u, v) + auΦ(Φ, v) − ω2m(u, v)

+ aΦu(u, Ψ) − aΦΦ(Φ, Ψ).

(40)

An abstract version of the non-symmetric frequency-dependent eigenvalue
problem for the quasi-periodic unit-cell problem can be stated as

Find eigensolutions (ũ, λ̃) ∈ H1
0,D(Ωp

0 )4 × H− 1

2 (Γ )4 corresponding to
eigenvalues γ ∈ C such that

kω(ũ, ṽ) + < λ̃, (trl − γ trr)ṽ > = 0 ∀ ṽ ∈ H1(Ωp
0 )4

< (γ trl − trr)ũ, µ̃ > = 0 ∀ µ̃ ∈ H− 1

2 (Γ )4
(41)

is satisfied for given parameters ω2.
The duality-product < ., . > refers to < ., . >

H
1

2 (Γ )4×H
−

1

2 (Γ )4
.

Model extension to absorbing boundary conditions

In case of piezoelectric equations absorbing boundary conditions are a bit
challenging. The degeneration of the frequency-dependent eigenvalue problem
causes some technical difficulties. However, we only state the formal charac-
teristics of the extended system bilinear forms

kABC

ω := a
(

(u, Φ), (v, Ψ)
)

+ i ω c
(

(u, Φ), (v, Ψ)
)

− ω2m
(

(u, Φ), (v, Ψ)
)

, (42)

kPML

ω := ã
(

(u, Φ), (v, Ψ)
)

− ω2 m̃
(

(u, Φ), (v, Ψ)
)

. (43)

The absorbing bilinear form c(., .) is positive-definite. The complex-valued
PML-bilinear forms ã(., .) and m̃(., .) are complex-symmetric.

The discretized eigenvalue problem

Analogous to the scalar case, we assume matching meshes on the left and the
right boundary. Therefore, a discretization of H− 1

2 (Γ )4 by Mortar-Elements
can be avoided. We can use nodal constraints for the Lagrange-parameter and
the discrete trace-operators corresponding to trl and trr simplify to identity
matrices.
Discretization of H1

0,D(Ω0) for the frequency-dependent piezoelectric bilinear
form is done in the way already described for (36). Galerkin-discretization of
(41) leads to parameter-dependent discretized generalized eigenvalue-
system (compare with (22))









Kω, ii K T
ω, li K T

ω, ri 0

Kω, li Kω, ll 0 I

Kω, ri 0 Kω, rr 0
0 0 I 0

















ũi

ũl

ũr

λ
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0 0 0 0
0 0 0 0
0 0 0 I

0 I 0 0
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where each ṽi refers to 4 degrees of freedom (ui
1, u

i
2, u

i
3, Φ

i) and each classi-
fied (i, l, r) matrix block is of the following (complex)-symmetric saddle point
structure

Kω,α,β =

(

Kω,α,β, uu KT
ω,α,β,Φu

Kω,α,β, Φu −Kω,α,β,ΦΦ

)

for α, β ∈ {i, l, r}. (45)

Standard boundary conditions on the bottom leads to real-valued matrices,
absorbing ones to complex-valued ones. We suppressed the h-subscript denot-
ing the discrete level. Due to the abstract formulation of the scalar and the
piezoelectric eigenvalue problem we can apply the solution strategies of the
scalar model, i.e. the Inner-Node-Matrix method or the Schur-Complement
method in Subsection 4.6.

6 Numerical results

In case of a 2 dimensional geometry the implementation of the Schur-
Complement method together with a Sparse-Cholesky-Factorization is suit-
able. However, if one thinks about simulations on 3 dimensional geometries,
one has to perform the Inner-Node-Matrix method.
The Schur-Complement method is implemented in the high order FE-Solver
NGSolve [22] using an LAPACK eigenvalue solver (zgeev, dggev) [1].

6.1 The scalar model problem

We use the scalar model problem to examine the specific influence of periodic
perturbations on surface wave propagation. Therefore, we determine the dis-
persion context for 3 different problem types based on the geometry shown in
Figure 4:

1. Wave propagation in homogenous media, where we assume homogenous
Neumann BCs on the top and the surface (ΓD = ∅, ΓN := Γtop ∪ Γbot).
See Figure 6.

2. Wave propagation in periodic media, where periodic perturbations are sim-
ulated by periodically arranged homogenous Dirichlet- and Neumann-BCs
on the top surface (see Figure 4). The homogenous Dirichlet conditions is
used as imitation of short-circuited electrodes, where a vanishing potential
can be assumed. See Figure 7.

3. Wave propagation in periodic media with first order absorbing boundary
conditions on the bottom surface Γbot. The periodic structure is modeled
as described in item 2. See Figure 8.

In the three following dispersion diagrams complex propagation constants
which belong to pass-bands are drawn in green, those belonging to stop-bands
in red. These diagrams include both bulk waves and surface waves. The clas-
sification can be performed by examining the corresponding eigenvectors.
In the homogenous case, there are no stop-bands. We gain pure imaginary
propagation constants iβ corresponding to continuous pass-bands.
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Fig. 6. Scalar model: Dispersion relation in a homogenous structure.
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Fig. 7. Scalar model: Dispersion relation in a periodic structure.
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Fig. 8. Scalar model: Dispersion relation in a periodic structure with ABC.
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6.2 Simulation of a piezoelectric periodic structure

Since the dispersion diagram gives information on many parameters of wave
propagation, which are used in other models and simulations, we want to
determine the eigenvalues very accurately. Our main aspects are frequency
domains where the dimension of the unit-cell is in the range of half the wave-
length. Therefore, higher order polynomials should approximate these waves
very accurately even for coarse meshes. However, the entering corners of the
electrodes and the jumping coefficients cause singularities in the solution.
These singularities cannot be resolved simply by increasing the polynomial
order of the ansatz functions, but only by a special local mesh-refinement
denoted as hp-refinement. Both methods consist of two main steps. First the
computation of an inverse (SC-method) or respectively a Sparse-Cholesky de-
composition. Secondly, the solution of an eigensystem, here the decrease of
degrees of freedom is very important for decreasing computational times.
We simulate the dispersion context of a TV-filter structure as used in practice

Fig. 9. Special local refinement at singularities

with Lithium-Niobate substrate and aluminum short-circuited electrodes. The
topology is chosen as shown in Figure 4. On the bottom first order absorbing
boundary conditions are assumed. We used 52 elements of polynomials order
p = 4 and an hp-refinement of 3 levels, which results in 4 · 609 degrees of free-
dom. Figure 10 shows a two-dimensional plot of the dispersion context near

 740

 760

 780

 800

 820

 840

 860

-0.15 -0.1 -0.05  0  0.05  0.1  0.15

Fr
eq

ue
nc

y 
in

 M
H

z

alpha.p

 740

 760

 780

 800

 800

 840

 860

 2  2.5  3  3.5  4  4.5

Fr
eq

ue
nc

y 
in

 M
H

z

beta.p

Fig. 10. Dispersion context of piezoelectric structure with periodic arranged elec-
trodes

the stop-band of the chosen filter structure. On the left the context between
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the frequency and the attenuation-constant α per cell is drawn, while on the
right the context between frequency and phase shift β in each cell. Above
the upper stop-band edge we can observe an increased attenuation caused by
bulk wave radiation, which is enabled by absorbing boundary conditions at the
bottom and does not occur in simulations including only standard boundary
conditions.

7 Conclusions

We gave a full detailed modeling for piezoelectric surface acoustic wave filters.
We started with developing mathematical tools for periodic structures for the
scalar wave equation. In order to reduce the computation domain while al-
lowing wave absorption we introduced absorbing boundary conditions at the
artificial bottom boundary. By an abstract formulation we achieved that the
developed methods are directly applicable on the piezoelectric field equations.
With the Inner-Node-Matrix and the Schur-Complement method we provided
and implemented two solution strategies. The Schur-Complement method is
suitable for solving the dispersion context for the three dimensional piezoelec-
tric equations with an underlying two dimensional geometry strategy. How-
ever, if one wants to extend the model to 3 dimensional geometries, iterative
algorithms using only matrix-vector products are recommendable. This is pro-
vided by the Inner-Node-Matrix method.
Another possible model improvement would be gained by perfectly matched
layers which allow an improved wave absorption into the material. We showed
that the introduced methods are still applicable in such models.
The developed algorithms can be also applied to other problem fields including
periodic structures like Maxwell’s equations for simulating photonic crystals.
By numerical experiments we compared the dispersion diagrams of homoge-
nous versus periodic structures and observed the classification of the frequency
domain into pass- and stop-band in the later one. Finally, we simulated a
piezoelectric structure as used for frequency filtering in common TV-sets.
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