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Abstract

Finite element tearing and interconnecting (FETI) methods, boundary element tear-
ing and interconnecting (BETI) methods and the closely related dual-primal methods,
FETI-DP and BETI-DP, are special iterative substructuring methods with Lagrange
multipliers. For elliptic boundary value problems on bounded domains, the condition
number of these methods can be rigorously bounded by C ((1 + log(H/h))2, where H is
the subdomain diameter and h the mesh size. The constant C is independent of H, h
and possible jumps in the coefficients of the partial differential equation.

In certain situations, one is interested to avoid artificial boundary conditions but
to model the real physical behavior in an exterior domain together with a radiation
condition, e. g., in electromagnetic field computations. The present paper gives a detailed
analysis on several tearing and interconnecting methods for such unbounded domains.
We state appropriate assumptions which result in condition number estimates similar to
the one above.

Key words: FETI, BETI, BETI-DP, boundary element method, domain decomposition,
iterative substructuring, exterior problems

1 Introduction

Boundary element tearing and interconnecting (BETI) and dual-primal BETI (BETI-DP)
methods are robust, parallel domain decomposition methods for solving partial differential
equations. The main idea of these methods goes back to the classical finite element tearing
and interconnecting (FETI) method which was introduced by Farhat and Roux [34] in 1991,
for a more detailed description see also [35, 85, 87]. The FETI methods belong to the class
of dual iterative substructuring methods. In contrast to primal iterative substructuring, the
finite element subspaces are treated separately on each subdomain including its boundary.
The global continuity across subdomain interfaces is enforced by Lagrange multipliers, which
leads to a saddle point problem that can be solved iteratively via its dual problem. The

1



2 1 INTRODUCTION

dual problem is symmetric positive definite on a subspace. Thus, it can be solved by a
preconditioned conjugate gradient (PCG) subspace iteration, with a special preconditioner
given by the method. The basic ingredients of FETI methods are just local Dirichlet- and
Neumann-solvers on the subdomains, which is probably the main reason that FETI methods
have become so popular.

Meanwhile, the classical FETI methods and the more recently developed dual-primal FETI
(FETI-DP) methods [30, 31] and balanced domain decomposition by constraints (BDDC)
techniques [21, 61] are well established in the field of robust parallel solvers for large-scale
finite element equations, see, e. g., [30, 31, 36, 45, 46, 48, 74, 80, 86]. The great success
of FETI, FETI-DP and BDDC methods is certainly due to their wide applicability, mod-
erate complexity, scalability and their robustness. The latter properties are not only ob-
served numerically, but they are approved theoretically. As a pioneering work, Mandel and
Tezaur [63] gave the first convergence proof for one-level FETI methods with non-redundant
Lagrange multipliers for two-dimensional elliptic problems with homogeneous coefficients.
They showed that the spectral condition number of the corresponding preconditioned sys-
tem is bounded by C (1 + log(H/h))β, with β ≤ 3, where H and h denote the usual scaling
of the subdomains and the finite elements, respectively. For a special two-dimensional case,
they could show that β ≤ 2. Another breakthrough was the work by Klawonn and Widlund
[49] (see also [48]) who introduced and analyzed new one-level FETI methods for three-
dimensional elliptic problem with heterogeneous coefficients. They could proof the spectral
bound C (1 + log(H/h))2, also for redundant Lagrange multipliers (which are usually used
in parallel implementations). Furthermore, assuming that the coefficients of the partial dif-
ferential equation are constant on the subdomains, Klawonn and Widlund showed that the
constant C is independent of possible jumps in the coefficients across subdomain interfaces
when a special scaling of the preconditioner is applied. For FETI-DP methods, the same
bound, C (1 + log(H/h))2, was then shown for two-dimensional elliptic problems with ho-
mogeneous coefficients by Mandel and Tezaur [64], and for heterogeneous problems in three
dimensions in a paper by Klawonn, Widlund and Dryja [50]. Finally, Brenner could prove
that the bound C (1 + log(H/h))2 is sharp for one-level FETI and FETI-DP in two dimen-
sions [10, 11]. In other words, all these preconditioners are quasi-optimal. We note that
the FETI methods are closely related to the balancing Neumann-Neumann methods [49].
Indeed, it was shown that the BDDC method gives the same eigenvalues as the FETI-DP
method, see, e. g., [9, 62]. For a comprehensive analysis of FETI and FETI-DP methods we
refer the reader to the recently published monograph [87] by Toselli and Widlund.

Recently, Langer and Steinbach have introduced boundary element tearing and intercon-
necting (BETI) methods as boundary element counterpart of the FETI methods [58], the
coupled FETI/BETI method [59], see also [56] for some numerical results, and finally, to-
gether with Pohoaţǎ, dual primal BETI (BETI-DP) methods [57]. The BETI methods use
boundary element based approximations of local Steklov-Poincaré operators instead of the
finite element based Schur complements. The FETI preconditioners can be replaced by pre-
conditioners derived from the corresponding boundary integral operators. Due to spectral
arguments, the advantageous properties of FETI methods, such as scalability, robustness,
etc., remain valid for BETI methods as well. Furthermore, inexact and data-sparse tech-
niques are available [54].

Coupling boundary element and finite element discretizations, one can benefit from the
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Figure 1: Illustration of the configuration of the bounded domain Ωint and the unbounded
domain Ωext. The shaded region is neither part of Ωint nor Ωext.

advantages of both discretization techniques. For instance, in electromagnetics, source terms
and nonlinearities can be treated more efficiently by the finite element method (FEM) than
by the boundary element method (BEM), whereas unbounded exterior domains, moving
parts and air regions can efficiently be handled by the BEM [44]. We refer to [18] for the
symmetric coupling of finite and boundary elements, and to [16, 38, 42, 43, 53, 82] for using
this coupling technique to construct domain decomposition solvers. In the context of coupled
FETI/BETI method for nonlinear problems we mention our recent paper [55].

The main focus of the present work is the analysis of coupled FETI/BETI methods for
problems including an unbounded exterior domain. In the unbounded case, there are two
crucial difficulties. First, the number of the neighboring subdomains of the exterior domain
can be arbitrarily large, which is totally in contrast to the usual bounded case. Secondly, we
will be faced with different scalings of the local operators, what originates from the fact that
the diameter of the exterior boundary can be arbitrarily larger than the diameters of the
remaining subdomains. In the following, we restrict ourselves to an elliptic model problem,

−∇ · [α(x)∇u(x)] = f(x) for x ∈ Ωint ,

−α0 ∆u(x) = 0 for x ∈ Ωext ,

together with the usual transmission conditions, a suitable radiation condition, and possibly
some boundary conditions on the interior boundary. Here, Ωint is bounded, Ωext is the
complement of a bounded domain, and the boundaries of Ωint and Ωext have a common part,
see Figure 1.

One of the key tools of non-overlapping domain decomposition methods is the local Steklov-
Poincaré operator describing the relation between the Dirichlet and the Neumann data on a
local subdomain boundary. In general, these Steklov-Poincaré operators become singular on
floating subdomains, which have no contribution from the Dirichlet boundary and thus no
Dirichlet boundary conditions which make the solution unique, cf. Figure 2, left. There are
two main directions to cope with this problem. On one hand, the one-level FETI and BETI
methods introduce a special projection dealing with the corresponding kernels, resulting
in a special kind of coarse space solver. On the other hand, the FETI-DP and BETI-DP
methods work with a primal space, which plays the role of coarse space handling the global
information exchange and ensures that the local operators on the remaining dual space are
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Figure 2: Illustration of three BETI schemes. Left: Standard formulation with one float-
ing subdomain; middle: All-floating formulation; right: BETI-DP formulation with primal
vertices. Shaded regions: Subdomains; •–•: Lagrange multipliers; ◦: Dirichlet boundary
conditions.
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Figure 3: Illustration of a subdomain face, edge and vertex in three dimensions.

regular.

For the construction of the projections occurring in the one-level methods, the knowledge
of the local kernels is of utmost importance. Whereas a local kernel corresponding to the
Laplace operator can at most be one-dimensional, the operator occurring in linear elastiticy
can produce kernels of dimension one up to six, depending on the boundary conditions. In
order to cope with this problem, a variant of the one-level method has been introduced
independently by Dostál, Horák and Kučera [23] (called total FETI) and, for the bound-
ary element case, by Of [70, 71, 72] (called all-floating BETI). The idea of these total or
all-floating methods is to impose the Dirichlet boundary conditions in terms of additional
Lagrange multipliers such that each local operator produces the same kind of kernel, being
of the maximal dimension, see also Figure 2, middle.

The main idea of FETI-DP and BETI-DP methods is to introduce primal unknowns,
which are not “torn” by Lagrange multipliers (cf. Figure 2, right). For the two-dimensional
Possion equation, it suffices to use the unknowns at cross points as such primal variables,
whereas in three dimensions at least some edge averages have to be added to the primal
spaces, cf. [50, 57, 87].

A crucial tool of the analysis of FETI and FETI-DP methods (cf., e. g., [87]) are rather
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technical Sobolev-type inequalities for finite element functions, in particular estimates for
subdomain faces and edges. A subdomain face is the open intersection of two adjacent
subdomains of a domain decomposition, whereas a subdomain edge belongs to more than
two subdomains and is part of the boundary of subdomain faces. Finally, the subdomain
vertices are the endpoints of subdomain edges (cf. Figure 3). The following estimate is
of special interest in the FETI analysis. We consider a finite element function vh on a
subdomain face F and the discrete cutoff function θF (also defined on F ) which vanishes on
∂F and is one on all inner nodes of the face. Then we have that

|Ih(θF vh)|2
H

1/2
00 (F )

≤ C (1 + log(HF /h))2
{
|vh|2H1/2(F )

+
1

HF
‖vh‖2

L2(F )

}
,

for all finite element functions vh defined on the face F . Here, Ih is the nodal interpolation
onto the finite element space, HF is the face diameter, and h is the mesh size. The precise
definition of the Sobolev spaces H

1/2
00 (F ) and H1/2(F ) as well as the corresponding (semi-

)norms will be given later. Many contributions to estimates of this type have been worked
out by Bramble, Pasciak and Schatz [6, 7], Bramble and Xu [8], Dryja [24], and in works by
Bjørstad and Widlund [4], Dryja, Smith and Widlund [25], and Dryja and Widlund [26, 27].
A comprehensive explanation together with recent results is given by Toselli and Widlund
in [87, Chapter 4].

Whenever applying the face estimate in an interior subdomain Ωi, it is important to note
that Ωi has only a fixed, typically small number of faces and that the face diameter HF is
comparable to the diameter of Ωi. Hence, we obtain∑

F⊂∂Ωi

|vh|2H1/2(F )
≤ C

{
|vh|2H1/2(∂Ωi)

+
1

diam Ωi
‖vh‖2

L2(∂Ωi)

}
.

The scaling factor in front of the L2-term is essential for the theory of domain decomposi-
tion methods, since any constants in estimates should in particular be independent of the
subdomain size.

In the case of an unbounded domain, say Ω0, arbitrary many subdomains can touch its
boundary Γ0, i. e., arbitrary many subdomain faces of the unbounded domain can occur.
Here, a first approach might be to use Sobolev interpolation theory. An argument going
back to von Petersdorff [89] shows that for all v ∈ H1/2(Γ0),∑

F⊂Γ0

‖v‖2
H1/2(F )

≤ C‖v‖2
H1/2(Γ0)

,

where the constant C depends only on the shape of Γ0. However, we have to read this result
for the case that the diameter of Γ0, which we denote by H0, is O(1). By a simple coordinate
transformation we obtain the following estimate for arbitrary boundaries Γ0,∑

F⊂Γ0

{
|v|2

H1/2(F )
+

1
HF

‖v‖2
L2(F )

}
≤ C

H0

HF

{
|v|2

H1/2(Γ0)
+

1
H0

‖v‖2
L2(Γ0)

}
.

Indeed, the norm induced by the exterior Steklov-Poincaré operator scales exactly like the
full H1/2-norm inside the brackets on the right hand side. In our analysis we need an
estimate similar to above one, but–if possible–robust with respect to the factor H0/HF . In
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this context, there is a strong relation to the theory of iterative substructuring with boundary
element methods, see, e. g., the works by Heuer and Stephan [40], Stephan and Tran [84],
Ainsworth, McLean and Tran [3], and Ainsworth and Guo [2], only to name a few. There,
comparable robust estimates were shown using special coarse spaces.

In the present work, we show how to achieve comparable robustness of the preconditioners
of one-level BETI methods under certain restrictions on the geometry and the coefficients,
and for BETI-DP methods under the usual assumptions. Of course, the results remain valid
for coupled FETI/BETI methods. It will become clear that the coarse space appearing in
the dual-primal methods is much more powerful than the one of the one-level methods. We
also discuss the computational cost in case of unbounded domains. Here, we will see that
in certain situations one-level methods have a better computational complexity than the
dual-primal methods.

In the FETI analysis by Toselli, Widlund, Dryja and Klawonn (cf. [49, 50, 87] the face
estimates are not related to the usual fractional Sobolev norms (such as the K-interpolation
norm or the Sobolev-Slobodeckĭı norm), but given in terms of the H1 energy norms of
(discrete) harmonic extensions. Indeed, the whole analysis neither needs any trace theorems
nor Rellich’s embedding theorem, for both of which the concrete size of the constant is usually
not at our disposal. In order to keep this concept at least partially alive, we work out spectral
properties of the approximated Steklov-Poincaré operators, which are based on the works
by Costabel [19], Hsiao, Steinbach and Wendland [42], Steinbach [82], and Steinbach and
Wendland [83].

The remainder of this paper is organized as follows. In Section 2 we introduce the notion
of boundary integral operators and domain decomposition. Additionally, we derive some re-
sults on spectral relations between continuous and approximated Steklov-Poincaré operators.
Section 3 contains a detailed formulation of one-level BETI methods for unbounded domains
and a full analysis of the corresponding preconditioners. In particular, we discuss both
the standard and the all-floating formulation. At the end we give some numerical results.
Section 4 is devoted to BETI-DP methods for unbounded domains and the corresponding
analysis of the quasi-optimal preconditioner. We give a conclusion in Section 5.

2 Preliminaries

2.1 Basic notation

First of all, we fix some of our basic notations. For a comprehensive introduction to Sobolev
spaces we refer to [1, 28], for the finite element method (FEM) to [13, 17], and for the
boundary element method (BEM) to [66, 81, 77]

Throughout this paper we denote the dual of a Banach space V by V ∗ and the duality
product between V ∗ and V by 〈·, ·〉. A linear operator T : V → V ∗ is said to be symmetric
positive definite (SPD) if 〈T v, w〉 = 〈T w, v〉, ∀v, w ∈ V , and 〈T v, v〉 > 0, ∀v ∈ V \{0}. The
adjoint T> : W → V ∗ of a linear operator T : V → W ∗ is defined by 〈T> w, v〉 = 〈T v, w〉,
∀v ∈ V , w ∈ W .

For a bounded domain Ω ⊂ Rd (with d = 2 or 3) with a Lipschitz boundary Γ, let H1(Ω),
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H1
0 (Ω) denote the usual Sobolev spaces. The space H1/2(Γ) is defined as

H1/2(Γ) :=
{

v ∈ L2(Γ) :
∫

Γ

∫
Γ

|u(x)− u(y)|2

|x− y|d
dx dy < ∞

}
. (2.1)

The spaces H−1(Ω) and H−1/2(Γ) are defined as the duals of H1
0 (Ω) and H1/2(Γ), respec-

tively.

We define the exterior of the bounded domain Ω by

Ωext := Rd \ Ω . (2.2)

Sometimes we may write Ωint instead of Ω to emphasize that this domain is the interior of
its boundary. On Ωext we define the Sobolev space

H1
loc(Ω

ext) := {u ∈ D′(Ωext) : u ∈ H1(BR ∩ Ωext) for all BR ⊃ Ω} , (2.3)

where BR is the open ball with radius R and D′(Ωext) the space of distributions on Ωext, see,
e. g., [66, 81].

Furthermore, for an open hypersurface Γ0 ⊂ Γ, we denote by H
1/2
00 (Γ0) the space of func-

tions on Γ0 whose extensions to Γ \ Γ0 by zero are in H1/2(Γ). We define the constant
functions 1Γ : Γ → R : x 7→ 1, and 0Γ : Γ → R : x 7→ 0, and observe that 1Γ ∈ H1/2(Γ). So
we can define the orthogonal subspace

H
−1/2
∗ (Γ) := {w ∈ H−1/2(Γ) : 〈w, 1Γ〉 = 0} . (2.4)

For a triangulation Th of a domain Ω or a boundary Γ, we denote by V h
1 (Ω) and V h

1 (Γ)
the spaces of continuous functions that are piecewise linear on the elements of the triangu-
lation. V h

0 (Γ) denotes the space of functions that are piecewise constant on the elements.
Furthermore, we write Γh for the set of nodes of the triangulation Th(Γ).

In this work, a � b means that some (generic) constant C > 0 exists with a ≤ C b. In
particular, C will never depend on any mesh size parameter h or (sub)domain diameters H,
only on shapes of (sub)domains or elements. Additionally, a ' b stands for a � b and b � a.

A complete list of notations can be found in the appendix.

2.2 Boundary integral operators

In this section we briefly summarize the notion of the standard boundary integral operators
and derive some properties thereof. In particular, we give explicit norm equivalences for
approximated Steklov-Poincaré operators.

2.2.1 Basic facts

First, we fix an open, bounded and simply connected domain Ωint ⊂ Rd (d = 2, 3) with a
Lipschitz boundary Γ = ∂Ωint. In the following, we work with the exterior domain Ωext :=
Rd \ Ω. Let ~n denote the outward unit normal vector on Γ, i. e., pointing into Ωext, cf.
Figure 4.
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n

Ωint Ωext

Γ

Figure 4: Interior domain Ωint, exterior domain Ωext and the outward normal vectors ~n on
the boundary Γ.

We consider the interior Laplace problem,

−∆u = 0 in Ωint , (2.5)

and the Laplace problem on the exterior space,

−∆u = 0 in Ωext . (2.6)

Additionally, we prescribe an appropriate radiation condition for the exterior problem to
ensure that the solution u can be represented by a fundamental solution. For a detailed
explanation we refer to [20, 66]. In the present work we use the radiation condition

u(x) = O(1)
∂u

∂~n
(x) =

{
O((|x| log |x|)−1) for d = 2

O(|x|−1) for d = 3
(2.7)

as |x| → ∞. Here ~n is understood as the outward unit normal vector on the boundary Γ̂ of
an arbitrary Lipschitz domain Ω̂ contained in Ωext.

It is well known, that for sufficiently smooth boundaries the trace operators

γint
0 : H1(Ωint) → H1/2(Γ) : (γint

0 u)(x) := limex→x
u(x̃) for x ∈ Γ, x̃ ∈ Ωint ,

γext
0 : H1

loc(Ω
ext) → H1/2(Γ) : (γext

0 u)(x) := limex→x
u(x̃) for x ∈ Γ, x̃ ∈ Ωext ,

γint
1 : H1(Ωint) → H−1/2(Γ) : (γint

1 u)(x) :=
∂u

∂~n
(x) for x ∈ Γ ,

γext
1 : H1

loc(Ω
ext) → H−1/2(Γ) : (γext

1 u)(x) := −∂u

∂~n
(x) for x ∈ Γ

are bounded linear operators (see, e. g., [66]). In the following, we write u|Γ instead of γint
0 u

or γext
0 u for u ∈ H1(Ωint) or u ∈ H1

loc(Ω
ext), respectively.

The fundamental solution of (2.5), (2.6), (2.7) is given by

U∗(x, y) =


− 1

2π
log |x− y| for d = 2,

1
4π

1
|x− y|

for d = 3 .
(2.8)
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We introduce the following boundary integral operators, the single layer potential operator
V , the double layer potential operator K and its adjoint K>, and the hypersingular integral
operator D defined by

V : H−1/2(Γ) → H1/2(Γ) : (V t)(x) :=
∫
Γ

U∗(x, y) t(y) dsy,

K : H1/2(Γ) → H1/2(Γ) : (K u)(x) :=
∫
Γ

∂

∂~ny
U∗(x, y) u(y) dsy,

K> : H−1/2(Γ) → H−1/2(Γ) : (K> t)(x) =
∫
Γ

∂

∂~nx
U∗(x, y) t(y) dsy,

D : H1/2(Γ) → H−1/2(Γ) : (D u)(x) := − ∂

∂~nx

∫
Γ

∂

∂~ny
U∗(x, y) u(y) dsy,

(2.9)

where x ∈ Γ.

The following assumption is needed for the ellipticity of the single layer potential operator
in two dimensions.

Assumption 2.1. If d = 2, we assume that diam Ωint < 1, which can always be obtained by
a simple scaling.

Lemma 2.1. The boundary integral operators defined in (2.9) are linear and bounded oper-
ators with the following properties:

(i) Any weak solution of the interior Laplace problem (2.5) fulfills the Caldéron system(
γint

0 u
γint

1 u

)
=

(
1
2I −K V

D 1
2I + K>

) (
γint

0 u
γint

1 u

)
. (2.10)

For the exterior problem (2.6) we have(
γext

0 u
γext

1 u

)
=

(
1
2I + K V

D 1
2I −K>

) (
γint

0 u
γext

1 u

)
. (2.11)

(ii) The single layer potential V is self-adjoint and (under Assumption 2.1) H−1/2(Γ)-
elliptic, i. e., there exists cV > 0 such that

〈V w, w〉 ≥ cV ‖w‖2
H−1/2(Γ)

,

for all w ∈ H−1/2(Γ). Thus, the inverse operator V −1 mapping H1/2(Γ) to H−1/2(Γ)
is self-adjoint, elliptic and bounded, and

‖v‖V −1 := 〈V −1v, v〉1/2

defines a norm on H1/2(Γ) equivalent to ‖ · ‖H1/2(Γ).
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(iii) The single layer potential V is an isomorphism between the subspaces H
−1/2
∗ (Γ) and

H
1/2
∗ (Γ), defined by

H
−1/2
∗ (Γ) := {w ∈ H−1/2(Γ) : 〈w, 1Γ〉 = 0}

H
1/2
∗ (Γ) := {v ∈ H1/2(Γ) : 〈V −1v, 1Γ〉 = 0} .

(iv) The hypersingular integral operator D is self-adjoint, H
1/2
∗ (Γ)-elliptic, and H1/2(Γ)-

semi-elliptic, i. e., there exists cD > 0 such that

〈D v, v〉 ≥ cD ‖v‖2
H1/2(Γ)

for v ∈ H
1/2
∗ (Γ) ,

〈D v, v〉 ≥ cD |v|2H1/2(Γ)
for v ∈ H1/2(Γ) ,

and ker D = span{1Γ}.

(v) The double layer potential operator K provides the contraction properties

(1− cK)‖v‖V −1 ≤ ‖(1
2I ±K)v‖V −1 ≤ cK ‖v‖V −1 for v ∈ H

1/2
∗ (Γ) ,

0 ≤ ‖(1
2I + K)v‖V −1 ≤ cK ‖v‖V −1 for v ∈ H1/2(Γ) ,

(1− cK)‖v‖V −1 ≤ ‖(1
2I −K)v‖V −1 ≤ ‖v‖V −1 for v ∈ H1/2(Γ) ,

where

c0 := inf
v∈H

1/2
∗ (Γ)

〈D v, v〉
〈V −1 v, v〉

∈
(
0,

1
4

)
,

cK :=
1
2

+

√
1
4
− c0 < 1 .

Additionally the following identities hold,

ker(1
2I + K) = span{1Γ} , (1

2I + K)1Γ = 0Γ ,

ker(1
2I −K) = {0Γ} , (1

2I −K)1Γ = 1Γ .

Proof. A proof can be found in [81].

Remark 2.1. The constants c0 and cK do not depend on the size of the domain Ωint but
only on its shape. This can be shown by introducing a simple scaling of the domain and
transforming the energy forms induced by D and V . In two dimensions the logarithm in the
fundamental solution yields an additive term in the V -form; nevertheless this term vanishes
for functions in the space H

1/2
∗ (Γ).

2.2.2 Steklov-Poincaré operators

From the first line of the Caldéron system (2.10) and Lemma 2.1, part (ii) we obtain that
any solution of the interior Laplace problem (2.5) fulfills the following relation between the
Cauchy data,

γint
1 u = V −1(1

2I + K)γint
0 u on Γ .
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A similar relation can be derived from (2.11) for the exterior problem (2.6), and we arrive
at the definition of the interior and exterior Steklov-Poincaré operators

Sint := V −1 (1
2I + K) Sext := V −1 (1

2I −K) (2.12)

which both map from H1/2(Γ) to H−1/2(Γ) and describe the Dirichlet to Neumann map
corresponding to the interior and exterior Laplace problem, respectively. Furthermore, by
(2.10), (2.11) we have the identities

Sint = D + (1
2I + K>)V −1(1

2I + K) ,

Sext = D + (1
2I −K>)V −1(1

2I −K) ,
(2.13)

which imply that the Sint and Sext are self-adjoint. We define the interior and exterior energy
form

aΩint(u, v) :=

int∫
Ω

∇u(x) · ∇v(x) dx , aΩext(u, v) :=
∫

Ωext

∇u(x) · ∇v(x) dx ,

for u, v ∈ H1(Ωint) and H1
loc(Ω

ext), respectively. By integration by parts and a density
argument (cf. [81]) we see that

〈Sint v, v〉 = min
u∈H1(Ωint)

u|Γ=v

aΩ(u, u) ,

〈Sext v, v〉 = min
u∈H1

loc(Ω
ext)

u|Γ=v

aΩext(u, u) ,
(2.14)

and from (2.12) that

〈V −1v, v〉 = 〈Sint v, v〉+ 〈Sext v, v〉 .

Lemma 2.2. (i) The following estimates hold for the Steklov-Poincaré operators:

(1− cK)〈V −1v, v〉 ≤ 〈Sint/ext v, v〉 ≤ cK〈V −1v, v〉 ∀v ∈ H
1/2
∗ (Γ)

(1− cK)〈V −1v, v〉 ≤ 〈Sext v, v〉 ≤ 〈V −1v, v〉 ∀v ∈ H1/2(Γ)

0 ≤ 〈Sint v, v〉 ≤ cK 〈V −1v, v〉 ∀v ∈ H1/2(Γ) ,

with the constraction constant cK > 0, see Lemma 2.1, part (v). In particular, Sext is
H1/2(Γ)-elliptic and Sint is H

1/2
∗ (Γ)-elliptic with ker Sint = span{1Γ}.

(ii) Poincaré’s fundamental theorem holds, i. e.,

〈Sext v, v〉 ≤ cK

1− cK
〈Sint v, v〉 ∀v ∈ H

1/2
∗ (Γ) ,

〈Sint v, v〉 ≤ cK

1− cK
〈Sext v, v〉 ∀v ∈ H1/2(Γ) .
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(iii) For v ∈ H1/2(Γ), the decomposition v = ṽ + v01Γ with v0 ∈ R and ṽ ∈ H
1/2
∗ (Γ) (i. e.,

〈V −1ṽ, v01Γ〉 = 0) is unique and orthogonal in the Sext inner product, i. e.,

〈Sext ṽ, v01Γ〉 = 0 .

(iv) We have

〈Sext v, v〉 ' 〈Sint v, v〉+
〈V −1v, 1Γ〉2

〈V −11Γ, 1Γ〉
.

Proof. We start with the proof of part (iii): For v ∈ H1/2(Γ), we obtain from ṽ = v − v01Γ

and the orthogonality relation 〈V −1(v − v01Γ), 1Γ〉 = 0 that

v0 =
〈V −1v, 1Γ〉
〈V −11Γ, 1Γ〉

,

which implies uniqueness. Using that (1
2I −K)1Γ = 1Γ (Lemma 2.1, part (v)) we obtain

〈Sext v01Γ, ṽ〉 = 〈V −1(1
2I −K)v01Γ, ṽ〉 = 〈V −1v01Γ, ṽ〉 = 0 ,

which proves the orthogonality (iii).

Part (i): For v ∈ H
1/2
∗ (Γ), the Cauchy-Schwarz inequality and the contraction properties

stated in Lemma 2.1, part (v) yield

〈Sint/ext v, v〉 = 〈V −1(1
2I ±K)v, v〉 ≤ ‖(1

2I ±K)v‖V −1‖v‖2
V −1 ≤ cK‖v‖2

V −1 .

On the other hand, for all v ∈ H
1/2
∗ (Γ) we have

〈Sint/ext v, v〉 = 〈V −1(1
2I ±K)v, v〉 = 〈V −1v, v〉 − 〈V −1(1

2I ∓K)v, v〉
≥ 〈V −1v, v〉 − cK‖v‖2

V −1 ≥ (1− cK)〈V −1v, v〉 .

The inequalities on the full space H1/2(Γ) can be derived using the decomposition (iii) and
the mapping properties of (1

2I ±K), see Lemma 2.1, part (v).

Statement (ii) is an immediate consequence of (i), see also [19].

Finally with the decomposition from part (iii) and Poincaré’s fundamental theorem (ii) we
obtain that

〈Sext v, v〉 = 〈Sext ṽ, ṽ〉+ 〈Sext v01Γ, v01Γ〉 ' 〈Sint ṽ, ṽ〉+ 〈V −1 v01Γ, v01Γ〉
= 〈Sint v, v〉+ (v0)2 〈V −11Γ, 1Γ〉 ,

which implies (iv).

2.2.3 Approximations of the Steklov-Poincaré operators

From equation (2.13) we see, that for a fixed v ∈ H1/2(Γ),

Sint/ext v = D v + (1
2I ±K>)w ,
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where w ∈ H−1/2(Γ) solves

〈V w, τ〉 = 〈(1
2I ±K)v, τ〉 ∀τ ∈ H−1/2(Γ) . (2.15)

In the following, we consider a shape-reglar triangulation Th of the polygonal boundary Γ.
Recall that V h

0 (Γ) is the space of piecewise constant functions on the corresponding elements.
According to [82], we define the boundary element approximations

S
int/ext
BEM v = D v + (1

2I ±K>)wh , (2.16)

where wh ∈ V h
0 (Γ) solves the projected equation

〈V wh, τh〉 = 〈(1
2I ±K)v, τh〉 ∀τh ∈ V h

0 (Γ) . (2.17)

The approximations S
int/ext
BEM are self-adjoint, they fulfill the same ellipticity properties as

the original operators Sint/ext, and estimates for the error Sint/ext − S
int/ext
BEM in terms of h

are available. We mention that kerSint
BEM = kerSint = span{1Γ}. Moreover, the matrix

representations of the restrictions of S
int/ext
BEM to V h

1 (Γ) → V h
1 (Γ)∗ are symmetric and can be

expressed by the standard BEM matrices, e. g.,

Sint
BEM,h = Dh + (1

2M
>
h + K>

h )V−1
h (1

2Mh + Kh) ,

where Dh, Kh and Vh are the matrix representations of the hypersingular, double layer
potential and the single layer potential operator, and Mh is a mass matrix. For more
details, we refer again to [82]. However, in this work we need the equivalence of the related
energy forms on the space V h

1 (Ω), which is presented detail in the subsequent section.

There exists a similar approximation Sint
FEM of the interior operator Sint by finite elements,

based on a shape-regular triangulation Th of the domain Ωint, cf. [82]. Restricted to the
space V h

1 (Γ), the corresponding energy form reads

〈Sint
FEM vh, vh〉 = min

uh∈V h
1 (Ωint)

uh|Γ=vh

aΩint(uh, uh) ∀vh ∈ V h
1 (Γ) . (2.18)

For the usual nodal FE basis, the matrix representation of Sint
FEM is exactly the Schur com-

plement of the FEM stiffness matrix eliminating the interior nodal unknowns.

2.2.4 Spectral relations of Sint/ext, S
int/ext
BEM and Sint

FEM

Lemma 2.3. The following spectral equivalence relations between the exact and approximated
Steklov-Poincaré operators hold.

〈Sint vh, vh〉 ≤ 〈Sint
FEM vh, vh〉 ≤ CT 〈Sint vh, vh〉 ∀vh ∈ V h

1 (Γ)
c0

cK
〈Sint v, v〉 ≤ 〈Sint

BEM v, v〉 ≤ 〈Sint v, v〉 ∀v ∈ H1/2(Γ)

〈Sext
BEM v, v〉 ≤ 〈Sext v, v〉 ∀v ∈ H1/2(Γ)

c0

cK
〈Sext v, v〉 ≤ 〈Sext

BEM v, v〉 ∀v ∈ H
1/2
∗ (Γ)

c0

cK
〈Sint v, v〉 ≤ 〈Sext

BEM v, v〉 ∀v ∈ H1/2(Γ) .

(2.19)
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Additionally, in three dimensions, or if diam Ω = O(1) in two dimensions,

〈Sint v, v〉+
1

diam Γ
‖u‖2

L2(Γ) ≤ Cext 〈Sext
BEM v, v〉 ∀v ∈ H1/2(Γ) ,

〈Sext v, v〉 ≤ C ′
ext 〈Sext

BEM v, v〉 ∀v ∈ H1/2(Γ) .
(2.20)

We point out that the constants c0, cK , CT , Cext and C ′
ext depend only on the shape of the

domain Ω.

Proof. The following proof of the estimates (2.19) can essentially be found in [82]. By (2.14)
and (2.18), it becomes clear that

〈Sint vh, vh〉 ≤ 〈Sint
FEM vh, vh〉 ∀vh ∈ V h

1 (Γ) .

The discrete trace theorem [REF] states that under appropriate assumptions on the mesh,
there exists a constant CT > 0 independent of h such that

〈Sint
FEM vh, vh〉 ≤ CT · 〈Sint vh, vh〉 ∀vh ∈ V h

1 (Γ) .

For the boundary element approximations Sint
BEM, Sext

BEM of the continuous Steklov-Poincaré
operator we can apply Lemma A.1 with V = H1/2(Γ), Vh = V h

0 , a(·, ·) = 〈V ·, ·〉 and
f = (1

2I ±K)v, and obtain that

〈V wh, wh〉 ≤ 〈V w, w〉 , (2.21)

Using the identities

〈Sint/ext v, v〉 = 〈D v, v〉+ 〈V w, w〉 ,

〈Sint/ext
BEM v, v〉 = 〈D v, v〉+ 〈V wh, wh〉 ,

(2.22)

which follow from (2.12), (2.15), (2.16), (2.17) and the adjoint relation between K and K>,
we immediately get

〈Sint/ext
BEM v, v〉 ≤ 〈Sint/ext v, v〉 ∀v ∈ H1/2(Γ) .

For the opposite direction, we first obtain for ṽ ∈ H
1/2
∗ (Γ),

〈Sint/ext
BEM ṽ, ṽ〉 = 〈D ṽ, ṽ〉+ 〈V wh, wh〉

≥ 〈D ṽ, ṽ〉 ≥ c0〈V −1ṽ, ṽ〉 ≥ c0

cK
〈Sint/ext ṽ, ṽ〉 ,

(2.23)

where we have used the ellipticity of V , Lemma 2.1, part (v) and Lemma 2.2, part (i).
Secondly, using the V −1-orthogonal splitting v = v01Γ + ṽ with ṽ ∈ H

1/2
∗ (Γ) and v0 ∈ R, see

Lemma 2.2, part (iii), we get

〈Sint/ext
BEM v, v〉 ≥ 〈D v, v〉 = 〈D ṽ, ṽ〉 ≥ c0

cK
〈Sint ṽ, ṽ〉 =

c0

cK
〈Sint v, v〉 .

This finishes the proof of the estimates (2.19).
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Now, we prove the two estimates (2.20) of the Sext
BEM energy form from below by the Sext

form and a regularized Sint form on the whole space H1/2(Γ). In order achieve this goal, we
recall once again that

〈Sext
BEM v, v〉 = 〈D v, v〉+ 〈V wh, wh〉

with wh defined by (2.17). We choose w0 ∈ R by

w0 =
〈(1

2I −K)v, 1Γ〉
〈V 1Γ, 1Γ〉

,

which is well-defined due to Assumption 2.1. Consequently, we get the relation

〈V w01Γ, 1Γ〉 = 〈(1
2I −K)v, 1Γ〉

which is the projection of equation (2.21) to span{1Γ} ⊂ V h
0 ⊂ H−1/2(Γ). Again, by

Lemma A.1 (now with V = V h
0 , Vh = span{1Γ} and a(·, ·) = 〈V ·, ·〉) we obtain

〈V wh, wh〉 ≥ 〈V w01Γ, w01Γ〉 =
〈(1

2I −K)v, 1Γ〉2

〈V 1Γ, 1Γ〉
= |Ψ(v)|2 . (2.24)

with the linear functional Ψ : H1/2(Γ) → R defined by

Ψ(v) :=
〈(1

2I −K)v, 1Γ〉√
〈V 1Γ, 1Γ〉

for v ∈ H1/2(Γ) .

We observe that Ψ is bounded in the H1/2-norm and, most importantly, that the definition of
Ψ is independent of the discretization parameter h. Furthermore, |Ψ(v)| defines a semi-norm
that becomes a norm on the constant functions, since for some v0 ∈ R with Ψ(v01Γ) = 0 we
have

0 = 〈(1
2I −K)v01Γ, 1Γ〉 = 〈v01Γ, 1Γ〉 = v0 · |Γ| ,

thus v0 = 0. On the other hand, we obtain from (2.14) and (2.23) that

〈D v, v〉 ≥ c0

cK
〈Sint v, v〉 =

c0

cK
min

u∈H1(Ω)

u|Γ=v

|u|2H1(Ω) . (2.25)

Due to Sobolev’s norm theorem (see, e. g., [87, Theorem A.12] or [69]),

|u|2H1(Ω) + |Ψ(u|Γ)|2 ' ‖u‖2
H1(Ω) ' |u|2H1(Ω) +

1
diam Γ

‖u|Γ‖2
L2(Γ) ,

where the scaling 1/diam Γ is obtained by dilation from a domain with unit diameter. Com-
bining this result with (2.22), (2.24) and (2.25) we obtain

〈Sext
BEM v, v〉 = 〈D v, v〉+ 〈V wh, wh〉 ≥

c0

cK
min

u∈H1(Ω)

u|Γ=v

{
|u|2H1(Ω) + |Ψ(v)|2

}

� min
u∈H1(Ω)

u|Γ=v

{
|u|2H1(Ω) +

1
diam Γ

‖v‖2
L2(Γ)

}
= 〈Sint v, v〉+

1
diam Γ

‖v‖2
L2(Γ) .
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In other words, there exists a constant Cext > 0 such that

〈Sint v, v〉+
1

diam Γ
‖v‖2

L2(Γ) ≤ Cext 〈Sext
BEM v, v〉 . (2.26)

The constant Cext is independent of the discretization parameter h, and by a scaling argument
one can show that in three dimensions Cext is independent of the size of Ω, i. e., it depends
only on the shape of Ω. In two dimensions, the single layer potential V does not scale linearly
due to the logarithmic term in the fundamental solution. Since we have to scale the domain
anyway, we can always achieve diam Ω ' O(1).

Finally, due to Lemma 2.2, part (iv) we have

〈Sext v, v〉 ' 〈Sint v, v〉+
〈V −1v, 1Γ〉2

〈V −11Γ, 1Γ〉
.

Since Υ(v) := 〈V −1v, 1Γ〉/‖1Γ‖V −1 is a bounded linear functional that reproduces the con-
stant functions, we can apply Sobolev’s norm theorem once more and using (2.26) we can
conclude that

〈Sext v, v〉 ≤ C ′
ext〈Sext

BEM v, v〉 , (2.27)

where C ′
ext depends (at least in three dimensions) only on the shape of Ω.

This finishes the proof of Lemma 2.3.

2.2.5 Newton potentials

The solution of the boundary value problem

−∆u(x) = f(x) for x ∈ Ω
u(x) = 0 for x ∈ Γ

defines the Newton potential N : H−1(Ω) → H−1/2(Γ)

N f(x) := −∂u

∂~n
.

For a FEM discretization of Ω, we denote the full stiffness matrix by K and group the un-
knowns corresponding to interior unknowns (subscript I) and boundary unknowns (subscript
Γ). The discrete FE equation reads(

KΓΓ KΓI

K>
ΓI KII

) (
0
uI

)
=

(
fΓ + t

fI

)
,

where t corresponds to the contribution from the Neumann data ∂u/∂~n. We define the
matrix N by

N :=
[

IΓ

∣∣∣−KΓI(KII)−1
]
,

where IΓ is the identity matrix corresponding to the unknowns on the boundary. Thus,

for f =
[

fΓ
fI

]
we have Nf = fΓ −KΓI(KII)−1fI = −t. The corresponding linear operator
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Figure 5: Non-overlapping domain decomposition of Ω into the unbounded subdomain Ω0

and the bounded subdomains Ω1, . . . , Ω10. The shaded region does not belong to Ω.

Nh : V h
1 (Ω)∗ → V h

1 (Γ)∗ is known to be a stable approximation of the exact Newton potential,
cf. [82]. A suitable BEM approximation of N can also be found in [82].

The general Dirichlet to Neumann map corresponding to the boundary value problem

−∆u(x) = f(x) for x ∈ Ω
u(x) = g(x) for x ∈ Γ

is given by

∂u

∂~n
= Sint g −N f .

2.3 Domain decomposition – Definitions and assumptions

We consider an open connected domain Ω ⊂ Rd, d = 2, 3, which can be decomposed into
finitely many non-overlapping subdomains Ωi, i ∈ I, where I ⊂ N0 is a finite index set, so
that

Ω =
⋃
i∈I

Ωi , Ωi ∩ Ωj = ∅ if i 6= j . (2.28)

We assume that all the subdomains Ωi, i ∈ I \ {0} are bounded and simply connected, and
that, if the original domain Ω is unbounded, the subdomain Ω0 is unbounded whereas its
complement Ωc

0 is bounded and simply connected too, cf. Figure 5. Furthermore, we assume
that the local boundaries Γi := ∂Ωi are polygonal and Lipschitz. The outward unit normal
vectors on Γi are denoted by ~ni. We emphasize that ~n0 points into Ωc

0 which is the interior
of Γ0. The subdomain interfaces Γij , regarded as open sets, are defined by Γij := Γi ∩ Γj . If
∂Ω is not empty, we assume that it is polygonal too, and that it splits in two disjoint parts,
a Dirichlet boundary ΓD, which is regarded as a closed set, and an open Neumann boundary
ΓN , such that

∂Ω = ΓD ∪ ΓN .
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The subdomain diameters are naturally defined by

Hi := diam Ωi for i ∈ I \ {0} ,

H0 := diam Ωc
0 .

In the following, we consider a shape-regular, quasi uniform triangulation Th(Γi) of each
subdomain boundary Γi such that the meshes match on interface boundaries. The minimal
mesh size of Th(Γi) is denoted by hi. For i 6= 0 we can always extend the boundary mesh
Th(Γi) to a shape-regular quasi-uniform triangulation Th(Ωi) of the whole subdomain Ωi.

We define the interface ΓI and the skeleton ΓS by

ΓI :=
⋃

i, j∈I
Γij \ ΓD , ΓS :=

⋃
i∈I

Γi = ΓI ∪ ∂Ω .

In three dimensions the interface ΓI is the union of

• subdomain faces F , regarded as open sets, which are shared by two subdomains,

• subdomain edges E, regarded as open sets, which are shared by more than two subdo-
mains,

• subdomain vertices V , which are endpoints of subdomain edges,

cf. [87], see also Figure 3 on page 4. In two dimensions, there are only subdomain edges
(which are open sets shared by two subdomains) and their endpoints, the subdomain vertices.

Regarding ∂Ω as an additional subdomain, we can also split the skeleton ΓS into subdomain
faces, edges and vertices in a straight forward manner. For a fixed i ∈ I, let Vi, Ei, Fi denote
the sets of subdomain vertices, edges and faces of ΓS that belong to Γi, respectively. We set
V :=

⋃
i∈I Vi, E :=

⋃
i∈I Ei, and F :=

⋃
i∈I Fi.

The face and edge diameters are denoted by HF := diam F and HE := diam E, respec-
tively. Whenever we like to emphasize that a face, edge or vertex is shared by at least two
subdomains Ωi, Ωj , we write Fij , Eij or Vij , and we define Hij := diam Fij (or diam Eij in
two dimensions).

The following assumption, which basically ensures that the subdomains cannot be very
thin, is typical for the theory of iterative substructuring methods, and it is needed for the
convergence analysis of BETI and BETI-DP preconditioners, cf. Assumption 4.3 in [87].

Assumption 2.2. 1. Each subdomain Ωi, for i 6= 0 is the union of shape-regular coarse
triangular or tetrahedral elements of a conforming mesh TH and the number of coarse
elements forming an individual subdomain is uniformly bounded.

2. There exist moderately bounded constants σ, σ > 0 such that,

σ Hi ≤ HF ≤ σ Hi ∀i ∈ I \ {0} and ∀F ∈ Fi ,

in three dimensions, and

σ Hi ≤ HE ≤ σ Hi ∀i ∈ I \ {0} and ∀E ∈ Ei ,

in two dimensions.
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Furthermore, we define

H

h
:= max

i, j∈I
Γij 6=∅

Hij

hi
. (2.29)

Note, that H0 is allowed to be arbitrary large in comparison to the other subdomain diam-
eters, and typically H0/h0 � H/h.

Remark 2.2. The first point in Assumption 2.2 is quite restrictive. In particular it is needed
for the Sobolev type inequalities relating finite element functions (see Section 3.3.4 of the
present paper and in [87, Chapter 4]). However, there are recent works on extending the
theory to less regular domains in two dimensions, cf. [22, 47].

2.4 The model problem

Throughout the paper we deal with the following model problem in our domain Ω which is
decomposed according to (2.28): Find u ∈ H1

loc(Ω) such that

−αi∆u(x) = f̄i(x) for x ∈ Ωi , i ∈ I ,

αi
∂u

∂~ni
(x) + αj

∂u

∂~nj
(x) = 0 for x ∈ Γij , i, j ∈ I

(2.30)

holds in weak sense, where u fulfills additionally the radiation condition (2.7) for |x| → ∞.
We assume that f̄0 ≡ 0 if 0 ∈ I. Recall, that Ω0 is the unbounded exterior of Γ0 and that
the normal vector ~n0 points into the interior of Γ0, cf. Figure 4. In the case that ∂Ω is not
empty, we assume Dirichlet and/or Neumann conditions on parts of it, i. e., ∂Ω = ΓD ∪ ΓN ,
and

u(x) = gD(x) for x ∈ ΓD , (2.31)

αi
∂u

∂~ni
(x) = gN (x) for x ∈ ΓN ∩ Γi , (2.32)

for some gD ∈ H1/2(ΓD), gN ∈ H−1/2(ΓN ). We assume that ΓN is the union of subdomain
faces, edges and vertices, i. e., the interface between ΓD and ΓN is aligned with the subdomain
edges and vertices. We assume further that 0 ∈ I or ΓD 6= ∅, such that either the radiation
condition or the Dirichlet boundary conditions guarantee the uniqueness of the solution.

2.5 Discrete skeleton formulations

Fixing our triangulations on the subdomains, we define the spaces

H
1/2
D (Γi) := {u ∈ H1/2(Γi) : u|Γi∩ΓD

= 0} ,

H
1/2
D (ΓS) := {u ∈ H1/2(ΓS) : u|ΓD

= 0} ,

V h
1,D(Γi) := H

1/2
D (Γi) ∩ V h

1 (Γi) ,

V h
1,D(ΓS) := {u ∈ H

1/2
D (ΓS) : u|Γi ∈ V h

1 (Γi)} .
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Let now g̃D ∈ H1/2(ΓS) be an arbitrary extension of gD from ΓD to ΓS . Then we can write
our solution as

u = g̃D + u(0) with u(0) ∈ H
1/2
D (ΓS) .

For the sake of simplicity, we assume that gD, g̃D and gN are contained in the corresponding
discrete spaces. Using the notion of the Steklov-Poincaré operators and Newton potentials
(cf. Section 2.2.2), we can rewrite the model problem (2.30)–(2.32) as the following variational
problem, cf. [58, 59]: Find u(0) ∈ H

1/2
D (ΓS) such that∑

i∈I
〈αi Si u

(0)|Γi , v|Γi〉 =
∑
i∈I
〈fi − αi Si g̃D|Γi , v|Γi〉 ∀v ∈ H

1/2
D (ΓS) . (2.33)

Here,

Si :=
{

Sint
i for i 6= 0 ,

Sext
0 for i = 0

denotes the interior or exterior Steklov-Poincaré operator on Γi, and

fi :=
{

Nif̄i + gN |Γi∩ΓN
∈ H−1/2(Γi) for i 6= 0 ,

0 for i = 0 ,

where Ni denotes the Newton potential on Ωi.

The Galerkin projection of (2.33) onto the discrete space V h
1,D reads: Find u

(0)
h ∈ V h

1,D(ΓS)
such that∑

i∈I
〈Si,h Ai u

(0)
h , Ai vh〉 =

∑
i∈I
〈fi,h − Si,h Ai g̃D, Ai vh〉 ∀vh ∈ V h

1,D(ΓS) . (2.34)

Here, Ai denotes the restriction operator from the global space V h
1,D(ΓS) to the local space

V h
1,D(Γi). The operators

S0,h := α0 Sext
i,BEM , Si,h := αi S

int
i,FEM/BEM , (2.35)

involve the approximations of Si which we have introduced in Section 2.2.3, and the linear
forms fi,h denote the corresponding discretizations of the continuous forms fi. For an in-
dividual i 6= 0 we can use either the finite element or the boundary element approximation
scheme.

Formulation (2.34) is equivalent to the minimization problem

min
v
(0)
h ∈V h

1,D(ΓS)

∑
i∈I

[1
2
〈Si,h Ai v

(0)
h , Ai v

(0)
h 〉 − 〈fi,h − Si,h Ai g̃D, Ai v

(0)
h 〉

]
. (2.36)

Using that uh = g̃D + u
(0)
h , we obtain by a simple computation the equivalent constrained

minimization problem

min
vh∈V h

1 (ΓS)

vh|ΓD
=gD

∑
i∈I

[1
2
〈Si,h Ai vh, Ai vh〉 − 〈fi,h, Ai vh〉

]
. (2.37)
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The discrete formulations (2.36) and (2.37) are equivalent to a linear system of algebraic
equations where the unknowns are the degrees of freedom of the unknown functions u

(0)
h ∈

V h
1,D(ΓD) or uh ∈ V h

1 (ΓS). FETI/BETI methods are specific methods to solve these algebraic
equations efficiently. In particular, these methods can be implemented on parallel machines in
a straight forward manner. The analysis of one-level BETI methods for unbounded domains
is presented in Section 3, whereas Section 4 is devoted to BETI-DP methods.

3 One-level BETI methods

In this section, we give the BETI formulation according to [58, 59] and the all-floating BETI
formulation according to [71, 72] (which is basically the same as the total FETI formulation
in [23]), and extend it to the case of unbounded domains (Section 3.1). Furthermore, we
state suitable preconditioners (Section 3.2) and derive appropriate assumptions, under which
we can show their quasi-optimality (Section 3.3).

3.1 BETI formulations

3.1.1 Lagrange multipliers

Using the tearing and interconnecting technique, we derive now two different saddle point
formulations, one starting from the minimization problem (2.36), to which we refer by the
term standard formulation (cf. [49, 87]), and the other one starting from problem (2.37),
which is called the all-floating formulation (cf. [71, 72]), or in the FEM context total FETI
(cf. [23]).

The standard formulation: Our starting point is the minimization problem (2.36). For
simplicity, we assume (only in context of the standard formulation), that gD ≡ 0. Following
[58, 59], we introduce separate unknowns uh,i ∈ V h

1,D(Γi) for Ai u
(0)
h . Since the triangulation

is fixed, we drop the subscript h for a better readability and write ui instead of uh,i. We fur-
ther introduce Lagrange parameters λ in order to re-enforce the continuity across subdomain
interfaces.

For each node x ∈ Γi,h ∩ Γj,h we can introduce a constraint

ui(x) = uj(x) . (3.1)

In this work, we consider non-redundant and fully redundant constraints. In the non-
redundant case we use the minimal number of necessary constraints, whereas in the fully
redundant case, the maximal number of possibile constraints is used, cf. Figure 6.

For the standard formulation of the one-level BETI method, we set

Wi := V h
1,D(Γi) , W :=

∏
i∈I

Wi .
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Figure 6: Sketch of non-redundant constraints (left) and fully redundant constraints (right)
for a subdomain edge in three dimensions, or a subdomain vertex (cross point) in two di-
mensions.

Note, that will use a different definition of Wi and W in the next section dealing with the
all-floating formulation. We write1

u = (ui)i∈I ∈ W .

In the following, we always regard Si,h as operators mapping from Wi to W ∗
i and assume

that fi,h ∈ W ∗
i . Moreover, we define

ker Si,h := {w ∈ Wi : Si,hw = 0} ,

depending on Wi. Throughout the whole section, we work extensively with the product space
W of typically discontinuous functions and its subspace Ŵ of functions that are continuous
across the interface ΓI , see also [49, 87].

We define the space of Lagrange multipliers by

U := RM , (3.2)

where M is the total number of constraints. We identify the dual U∗ with RM and write
〈µ, λ〉 = (µ, λ)`2 for λ ∈ U , µ ∈ U∗. Furthermore, we introduce a natural basis: The unit
vector in U that corresponds to the constraint ui(x) = uj(x) for x ∈ Γi ∩ Γj , is denoted by
λx,ij . The corresponding unit vector in U∗ is denoted by µx,ij .

We can now define the jump operator B : W → U∗ by

〈B w, λx,ij〉 = wmax(i, j)(x)− wmin(i, j)(x) . (3.3)

Let Bi : Wi → U∗ defined by

〈Bi wi, λx,jk〉 =


wi(x) for i = j, x ∈ Γi,h ∩ ΓI ,
−wi(x) for i = k, x ∈ Γi,h ∩ ΓI ,
0 else,

(3.4)

1Note, that we use the same notation for the continuous solution u ∈ H1/2(ΓS). However, the difference
should always be clear from the context.
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where j > k. Recall, that Γi,h is the (discrete) set of nodes of the triangulation of Γi. By
definition, we have 〈B w, λ〉 =

∑
i∈I〈Bi wi, λ〉 for all λ ∈ U . Hence, the constraints (3.1)

can be written in the compact form

B u = 0 , (3.5)

to be read as an equation in U∗. Note, that the operator B can simply be represented by a
signed Boolean matrix, i. e., a matrix with entries 0, 1 or −1.

The adjoints B>
i : U → W ∗

i and B> : U → W ∗ are defined by

〈B>
i λ, wi〉 = 〈Bi wi, λ〉 ∀λ ∈ U, wi ∈ Wi ,

〈B>λ, w〉 = 〈B w, λ〉 ∀λ ∈ U, w ∈ W .

In addition, we define the operator S : W → W ∗ by

S := diag (Si,h)i∈I (3.6)

and the linear form f ∈ W ∗ by

〈f, w〉 :=
∑
i∈I
〈fi,h, wi〉 ∀w ∈ W . (3.7)

With this notation we can write the minimization problem (2.36) equivalently as the con-
strained minimization problem

min
u∈W

Bu=0

1
2
〈S u, u〉 − 〈f, u〉 .

The corresponding saddle point problem reads as follows. Find (u, λ) ∈ W × U :(
S B>

B 0

) (
u
λ

)
=

(
f
0

)
. (3.8)

We define the index set of the floating subdomains,

Ifloat := {i ∈ I : kerSi,h 6= {0}} ,

which is the set of those i ∈ I \ {0} with Γi ∩ ΓD = ∅ for the standard formulation.

The following assumption is needed later in the convergence analysis, cf. [87].

Assumption 3.1. For the standard formulation of the one-level BETI method in three
dimensions, we assume that in the case that Ωi touches the Dirichlet boundary ΓD, the
intersection Γi ∩ ΓD consists only of faces and edges, no isolated points.

The reason for this assumption is that in two dimensions, there is a discrete Poincaré-
Friedrichs inequality (cf. Lemma 3.14, page 44) for single-point Dirichlet conditions stating
that for an edge E ∈ Ei,

1
HE

‖u‖2
L2(E) ≤ C (1 + log(HE/hi)) |u|2H1/2(E)

,

if u ∈ V h
1 (E) vanishes at one of the endpoints of E. In three dimensions, there is no

comparable result for such single-point Dirichlet conditions, at least not with a logarithmic
factor; see also [87, Chapter 5, Theorem 5.3 and Remark 5.4].
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The all-floating formulation: According to [71, 72], we start with the minimization
problem (2.37), and apply the same tearing and interconnecting technique as before, i. e.,
we introduce separate unknowns ui ∈ V h

1 (Γi) for Ai uh and re-enforce the continuity across
interfaces by the same Lagrange multipliers as in the standard formulation. However, for
the Dirichlet boundary conditions

ui(x) = gD(x) for x ∈ Γi,h ∩ ΓD , (3.9)

which are now localized, we introduce additional Lagrange multipliers. The corresponding
new unit vectors in the spaces U and U∗ are denoted by λx,i and µx,i, respectively. We
extend the jump operators Bi : Wi → U∗ and B : W → U∗ by

〈Bi wi, λx,j〉 = δij wi(x)
〈B w, λx,j〉 = wj(x)

for x ∈ ΓS,h ∩ ΓD .

Together with b ∈ U∗ defined by

〈b, λx,ij〉 = 0 for x ∈ ΓS,h \ ΓD ,

〈b, λx,i〉 = gD(x) for x ∈ ΓS,h ∩ ΓD ,

the modified constraints read

B u = b . (3.10)

Since the Dirichlet conditions are already reflected by these constraints, our unknowns ui

are now functions to be found in

Wi := V h
1 (Γi) .

Since ker Si,h = span{1Γ} for all i ∈ I \ {0} and because the exterior Steklov-Poincaré
operator S0,h has always a trivial kernel,

Ifloat = I \ {0} .

which justifies the expression ’all-floating’.

Finally, the corresponding saddle point formulation reads: Find (u, λ) ∈ W ×U such that(
S B>

B 0

) (
u
λ

)
=

(
f
b

)
. (3.11)

Note, that for both systems (3.8) and (3.11), kerS ∩ ker B = {0}, and thus S is elliptic on
ker B. Therefore, the solution (u, λ) is unique up to adding elements from ker B> to λ.

Remark 3.1. We see that in the all-floating formulation, all the interior operators Si,h have
the same kind of kernel. This can be a big advantage in linear elasticity, since in the standard
formulation the corresponding local kernels can have dimension from 0 up to 6.

Remark 3.2. We observe that, if Γ0 has a common part with the Dirichlet boundary, the
kernel of S0,h does not change whether we formulate the Dirichlet boundary conditions with
Lagrange multipliers, or incorporate them in the space W0.
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The following technical assumption will be essential in Section 3.3 and its reason will be-
come clear in the proof of Lemma 3.12 in Section 3.3.6. Note, that in practice the assumption
does not really restrict our method, but is just an implementational detail.

Assumption 3.2. If Γ0 ∩ ΓD 6= ∅, we assume that the corresponding Dirichlet conditions
are not formulated by Lagrange multipliers, but incorporated into the space W0 := V h

1,D(Γ0),
also in the all-floating formulation. In accordance with Assumption 3.1 (page 23), we assume
that in three dimensions the intersection of Γ0 and ΓD does not contain isolated points but
is at least in the magnitude of a subdomain edge.

3.1.2 Dual formulations

In the following, all derivations hold for the standard and the all-floating formulation (the
choice of which effects in particular B, U , Wi and Ifloat), and both the non-redundant and the
fully redundant choice of Lagrange multipliers. Any differences will be pointed out explicitly.

We introduce parameterizations Ri : R → ker Si,h ⊂ Wi of the local kernels and set
Z := {ξ = (ξi)i∈I ∈ R|I| : ξi = 0 for i 6∈ Ifloat} and R := diag (Ri)i∈I : Z → ker S.
Furthermore, the adjoints R>

i : W ∗
i → R and R> : W ∗ → Z are defined by

〈w, Ri ξi〉 = (R>
i w)ξi ∀w ∈ W ∗

i , ∀ξi ∈ R ,

〈w, R ξ〉 = (R>w, ξ)`2 ∀w ∈ W ∗, ∀ξ ∈ Z .
(3.12)

For all i ∈ Ifloat, we introduce the regularizations S̃i,h : Wi → W ∗
i by

〈S̃i,h v, w〉 = 〈Si,h v, w〉+ βi(v, 1Γ)L2(Γi)(w, 1Γ)L2(Γi) for v, w ∈ Wi , (3.13)

with βi > 0, see also [60]. E. g., we can set βi := αi H
−1
i |Γi|−1; the factor H−1

i |Γi|−1 can
be obtained by dilation from a domain with unit diameter. For the remaining non-floating
subdomains, we simply set S̃i,h := Si,h, for i ∈ I \ Ifloat. We can now define the following
pseudo-inverses S†i,h by

S†i,h :=

{ (
S̃i,h

)−1 for i ∈ Ifloat ,(
Si,h

)−1 for i 6∈ Ifloat ,

and set S̃ := diag (S̃i,h)i∈I and S† := diag (S†i,h)i∈I .

The following lemma summarizes some well-known properties of the Moore-Penrose pseudo
inverse in the concrete context of S†i,h.

Lemma 3.1. For all i ∈ Ifloat and v ∈ range Si,h,

Si,h S†i,h v = v ,

and
(S†i,hv, z)L2(Γi) = 0 ∀z ∈ ker Si,h .
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Proof. On one hand, v ∈ range Si,h implies 〈v, 1Γ〉 = 0 and thus,

〈Si,h S†i,h v, 1Γ〉 = 〈v, 1Γ〉 .

On the other hand, for w ∈ W , with (w, 1Γ)L2(Γi) = 0, we obtain

〈Si,h S†i,h v, w〉 = 〈S̃i,h S†i,h v, w〉 − βi(S
†
i,h v, 1Γ)L2(Γi)(w, 1Γ)L2(Γi) = 〈v, w〉 .

Combining the last two identities, we can easily derive

〈Si,h S†i,h v, w〉 = 〈v, w〉 ∀w ∈ W .

Furthermore, we set u = S†i,hv. Thus, S̃i,hu = v, and we can conclude that

〈Si,h u, 1Γ〉+ βi(u, 1Γ)L2(Γi)(1Γ, 1Γ)L2(Γi) = 〈v ,1Γ〉 .

The first term vanishes since 1Γ ∈ ker Si,h and the right hand side is zero because v ∈
range Si,h. Hence, we obtain that (u, 1Γ)L2(Γi) = 0 which directly implies above orthogonal-
ity.2

We can now express each ui in terms of the Lagrange multipliers λ by

ui = S†i,h[fi,h −B>
i λ] + Ri ξi (3.14)

for some ξ ∈ Z, if the compatibility condition

fi,h −B>
i λ ∈ range Si,h

is satisfied, which is equivalent to R>
i [fi,h − B>

i λ] = 0. We substitute the local solution ui

in the second equation of (3.8) or (3.11) by formula (3.14) and introduce the abbreviations

F := B S†B> G := B R d := B S†f and e := R>f , (3.15)

where for the all-floating formulation we have to set

d := B S†f − b . (3.16)

Eventually, we arrive at the dual formulation: Find (λ, ξ) ∈ U × Z such that(
F −G
G> 0

) (
λ
ξ

)
=

(
d
e

)
. (3.17)

In order to eliminate the kernel correction ξ, we define two special projection operators.
For this purpose, we fix an operator Q : U∗ → U (which we will specify later), such that

2We could also use other choices of eSi,h. For instance, if we regularize by βi〈V −1
i v ,1Γ〉〈V −1

i w ,1Γ〉 (where
Vi is the single layer potential operator on Γi), we get that S†i,hv is orthogonal to ker Si,h in the inner product

induced by V −1
i instead of the L2-product.
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〈µ, Q ν〉 defines an inner product on range G. The projections P : U → ker G> and P> :
U∗ → (range G)⊥Q are now defined by

P := I −QG (G>QG)−1G> ,

P> := I −G (G>QG)−1G>Q .
(3.18)

Here, range (P>) = (range G)⊥Q = {µ ∈ U∗ : 〈Qµ, µ′〉 ∀µ′ ∈ range G}.
Note, that G>QG is the Galerkin projection of B>QB onto kerS. Since ker S∩ker B = {0}

and Q is SPD on range G, the operator G>QG is SPD and so its inverse always exists.

Remark 3.3. Since G = B R is a difference operator, G>QG is equivalent to the stiffness
matrix of a graph Laplace problem, where each floating subdomain Ωi, i ∈ Ifloat contributes
one degree of freedom. The weights or coefficients of this graph Laplace operator are kept
in the SPD-operator Q. Thus, an application of P or P> implicitly solves a coarse problem
with as many unknowns as there are floating subdomains.

Furthermore, according to [49, 87], we define the subspace V ⊂ U of admissible Lagrange
increments and a space V ′ ⊂ U∗ by

V := {λ ∈ U : 〈B z, λ〉 = 0 ∀z ∈ ker S} = kerG> = range P ,

V ′ := {µ ∈ U∗ : 〈B z, Qµ〉 = 0 ∀z ∈ ker S} = (range G)⊥Q = range P> .

Additionally, we set

Ṽ ′ := V ′ ∩ range B . (3.19)

Remark 3.4. If Q is SPD on V ′ it is easily shown that the space V ′ can be identified with
the dual of V and Ṽ ′ can be identified with the dual of the factor space V/ ker B> .

We introduce the `2-projector Π̃ : V ′ → Ṽ ′. Then

Π̃ P> = P>Π̃ , Π̃ F = F, Π̃ G = G, Π̃ d = d , (3.20)

and it is clear that

F (λ + ker B>) = F λ . (3.21)

Multiplying the first equation in (3.17) from the left by P> and (I − P>), we obtain

P>F λ = P>d ,

(I − P>)F λ−G ξ = (I − P>)d .

Note, that due to (3.20) and (3.21) these equations neither change if we multiply them from
the left by Π̃ nor if we add an element of kerB> to λ.

Splitting λ = λ0 + λ̃ with λ̃ ∈ V , we obtain for the second equation in (3.17) that

G>λ0 = e .
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We see that we have now decoupled all the equations, and that the solution (λ, ξ) = (λ0+λ̃, ξ)
is given by

λ0 = QG (G>QG)−1e , (3.22)

P>F λ̃ = P>(d− F λ0) , (3.23)

ξ = (G>QG)−1G>Q (F λ− d) . (3.24)

Hence, if we solve (3.23) for λ̃, we can easily compute λ, ξ, and finally get u from for-
mula (3.14). By V = range P and V ′ = range P>, we see that on the subspace V/ ker B> the
operator P>F = P>F P is SPD, and so equation (3.23) can be solved by a preconditioned
conjugate gradient (PCG) subspace iteration on V/ ker B> .

It was proved in [33] that the condition number of the un-preconditioned FETI system
grows like O(H/h), which emphasizes the importance of preconditioners.

3.2 Preconditioners for the one-level method

We are now searching for some preconditioner M−1 : U∗ → U for P>F on the factor space
V/ ker B> , i. e., we aim for

λmin‖λ‖`2 ≤ (P M−1P>F λ, λ)`2 ≤ λmax‖λ‖`2 ∀λ ∈ V/ ker B>

with λmax/λmin ≤ C as small as possible. We informally write

κ(P M−1P>F P ) ≤ C

to be understood in the factor space modulo kerB>.

3.2.1 Weighted counting functions

A key tool for the robustness of FETI methods with respect to coefficient jumps are the
weighted counting functions, which were first introduced by Sarkis [76], and which play
also a crucial role in balancing Neumann-Neumann methods; see [87, Chapter 6] and the
references therin.

For a node x of our triangulation, let Nx denote the set of indices of those subdomains
that touch that node. Since this set does not change on edges and faces, we write NE

and NF for the sets of indices of those subdomains that touch the edge E and the face F ,
respectively. For a fixed number γ ∈ [1/2, ∞), we can now define the weighted counting
functions δ†i ∈ V h

1 (ΓS) by

δ†i (x) :=


αγ

i∑
k∈Nx

αγ
k

for x ∈ Γi,h ,

0 for x ∈ ΓS,h \ Γi,h .

(3.25)

These functions provide a the following partition of unity on ΓS,h:∑
i∈I

δ†i (x) ≡ 1 ∀x ∈ ΓS,h .
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Lemma 3.2. The estimate

αi

(
δ†j(x)

)2 ≤ min(αi, αj) ∀x ∈ Γi,h ∩ Γj,h (3.26)

holds for any choice of the exponent γ ∈ [1/2, ∞).

Proof. We have to prove that

αi α
2γ
j( ∑

k∈Nx

αγ
k

)2 ≤ min(αi, αj) ,

for each x ∈ Γi,h ∩ Γj,h. The estimate is trivial if αi ≤ αj . In the other case we note that
the function s 7→ s1−2γ is monotonically decreasing for γ ∈ [1/2, ∞), and so we have

αi α
2γ
j( ∑

k∈Nx

αγ
k

)2 ≤
α2γ

i( ∑
k∈Nx

αγ
k

)2 α1−2γ
i α2γ

j ≤ 1 · α1−2γ
j α2γ

j ≤ αj .

3.2.2 Non-redundant Lagrange multipliers

For the case of non-redundant multipliers the following preconditioner was first introduced
and analyzed in [49] for the FETI method, and in [58] for the BETI method, respectively.
Let us define

M−1 := (B D−1B>)−1B D−1 S D−1B>(B D−1B>)−1 (3.27)

with D := diag (Di)i∈I : W → W ∗, and Di : Wi → W ∗
i defined by

〈Di Φiw, Φiw〉 = (Di w, w)`2 ,

Di := diag (di,x)x∈Γi,h
,

di,x :=
{

δ†i (x) x ∈ Γi,h \ ΓD ,
1 x ∈ Γi,h ∩ ΓD .

Here,
Φi : Rdim(Wi) → Wi : w 7→ w =

∑
xj∈Γi,h

wjϕj

denotes the usual FE isomorphism, Nx = {j ∈ I : x ∈ Γj} is the index set of subdomains
touching the node x, and γ is an arbitrary but fixed real exponent with γ ≥ 1/2. Due to
their diagonal representation given above, it is clear that D−1

i and D−1 always exist. Note,
that ΓD is regarded as a closed set, and that for nodes x lying on subdomain faces included
in the Neumann boundary ΓN also di,x = 1.
Remark 3.5. In the definition (3.27) of the preconditioner M−1, the local operators Si,h ap-
pearing in S may be replaced by any other preconditioners for the local operators S†i,h which
are spectrally equivalent to Si,h. There are many preconditioners from the standard finite
element literature, cf., e. g., [52, 87]. Another possible choice is the discrete hypersingular
operator Di,h, see [54, 58, 59].
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In the following, we state some lemmas in order to get a certain characterization of our
preconditioner at the end of Section 3.2 in Corollary 3.6. This goes along the theory in [87]
and is strongly related to the theory of Neumann-Neumann methods.

Lemma 3.3. For the non-redundant case, the projection operator PD : W 7→ W defined by

PD := D−1B>(B D−1B>)−1B (3.28)

satisfies
B PD = B and I − PD : W → Ŵ ,

i. e., the finite element function w − PD w is continuous across sudomain interfaces for all
w ∈ W . Furthermore, w − PD w satisfies the homogeneous Dirichlet boundary conditions,
and PD w vanishes at nodes on the Neumann boundary which do not belong to the interface.

Proof. From the definition of PD we see that B PD = B and B(I −PD) = 0. Therefore, any
function w−PD w is continuous across subdomain interfaces. For the all-floating formulation,
we obtain already from B(I−PD) = 0 that the function w−PD w satisfies the homogeneous
Dirichlet boundary conditions. For the standard formulation, we can observe that B> does
not contribute to the Dirichlet nodes, and neither does PD. Hence, (w − PD w)i|ΓD

= wi|ΓD

for all i ∈ I, and due to our assumption wi ∈ Wi already satisfies the homogeneous Dirichlet
boundary conditions. For both formulations, B> does not contribute to the nodes on the
Neumann boundary that do not belong to the interface, and so PD w vanishes there too.

Lemma 3.4. With the projection ED : W → Ŵ defined by

(ED w)i(x) :=


∑

j∈Nx

δ†j(x) wj(x) for x ∈ Γi,h \ ΓD ,

0 for x ∈ Γi,h ∩ ΓD ,

the identity
PD = I − ED

holds.

Proof. The proof for the standard formulation can be found in [49, 87]. Note, that on nodes
x ∈ Γi,h ∩ ΓN that do not belong to the interface ΓI , Nx consists only of one index, namely
i. Since PD w gives no contribution to these nodes, the formula PD = I −ED remains valid.
For the all-floating formulation, we additionally need to consider the nodes on Γi,h ∩ ΓD.
From the previous lemma we know that (w − PD w)i|ΓD

= 0. By the definition of ED also
(ED w)i|ΓD

= 0. Thus, I − PD = ED.

3.2.3 Fully redundant Lagrange multipliers

For the fully redundant case, the following preconditioner is chosen, which was originally
proposed for the FETI method in [75] and analyzed in [49],

M−1 = BDr S B>
Dr (3.29)
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with BDr :=
∑
i∈I

B
(i)
Dr , where the operator B

(i)
Dr : W ∗

i → U and its adjoint B
(i)
Dr

: U∗ → Wi are

defined by

[(B(i)
Dr)>µx,jk](y) :=


δ†k(x) for k < j = i, x = y,

−δ†j(x) for i = k < j, x = y,

0 else

for x ∈ Γi,h \ ΓD and j ∈ Nx, and

[(B(i)
Dr)>µx,j ](y) :=

{
1 for i = j, x = y,
0 else,

for x ∈ Γi,h ∩ ΓD. Of course, as in the non-redundant case, the operator S appearing in the
definition (3.29) of M−1 can be replaced by any spectral equivalent operator, cf. Remark 3.5.

Lemma 3.5. For the redundant case we have

B>
DrB = PD . (3.30)

Proof. Using the definition of B (cf. (3.3)) and BDr and due to the fact that we have fully
redundant constraints, we obtain the following formula for the all-floating formulation:

(B(i)
Dr)>B w = (B(i)

Dr)>
∑
i∈I

[ ∑
x∈Γi,h∩ΓI

j∈Nx

(
wmax(i, j)(x)− wmin(i, j)(x)

)
µx,ij +

+
∑

x∈Γi,h∩ΓD

wi(x) µx,i

]
,

for all w ∈ W . For the standard formulation, the terms corresponding to µx,i must be left
out. Hence,

[
(B(i)

Dr)>B w
]
(x) =


∑

j∈Nx

δ†j(x)
(
wi(x)− wj(x)

)
for x ∈ Γi,h \ ΓD ,

wi(x) for x ∈ Γi,h ∪ ΓD .

This formula also holds for the standard formulation, since wi|ΓD
= 0, and it proves that

B>
DrB = I − ED = PD, cf. Lemma 3.4.

3.2.4 A unified characterization of all BETI formulations

Corollary 3.6. For all BETI formulations, no matter if non-redundant or fully redundant
Lagrange multipliers, standard or all-floating formulation

B>M−1B = P>
D S PD

holds. In other words, the projection PD = I − ED characterizes all the preconditioners of
the various formulations.
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FETI/BETI-PCG-Algorithm
e = R>f
d = B S†f

λ(0) = QG(G>QG)−1 e

r(0) = P>(d− F λ(0))
s(0) = z(0) = P M−1 r(0)

β0 = 〈r(0), z(0)〉
n = 0
while (βn ≤ β0 · ε and n < nmax)
{

x(n) = P>F s(n)

αn = 〈x(n), s(n)〉
α = βn/αn

λ(n+1) = λ(n) + α s(n)

r(n+1) = r(n) − α x(n)

z(n+1) = P M−1 r(n+1)

βn+1 = 〈rn+1, z(n+1)〉
β = βn+1/βn

s(n+1) = z(n+1) + β s(n)

n = n + 1
}
γ = (G>QG)−1G>Q (F λ(n) − d)
u = S†(f −B>λ(n)) + R γ

Figure 7: The variables in the spaces U and U∗ are emphasized in the following way: Bold
variables (e. g., s(n)) correspond to unknowns in V or λ0 + V . The underlined variables
(e. g., x(n)) correspond to unknowns in Ṽ ′ = V ′ ∩ range B. The key observations is that all
operators applied to the bold variables (i. e., F and B>) are invariant if we add elements
from ker B>, and any inner product of the form 〈x(n), s(n)〉 is invariant if we add terms
from kerB> to s(n) since x(n) ∈ range B. Furthermore, all terms assigned to the underlined
variables, such as r(n) really stay in Ṽ ′ = V ′ ∩ range B.
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Figure 7 displays the entire FETI/BETI algorithm, cf. also [58, 59, 87].

Remark 3.6. The present method contains a coarse solver in the projections P , P>. The
name one-level method refers to this specific kind of coarse solver, not to the entire algorithm.
On the contrary, two-level FETI methods were designed for biharmonic and shell problems
[29, 32] and, as we have already mentioned in the introduction, in the case of dual-primal
methods (FETI-DP, BETI-DP), a completely different coarse solver shows up.

Remark 3.7. The BETI-Algorithm can easily be parallelized. Then the bold variables (see
Figure 7) correspond to accumulated vectors, whereas the underlined variables correspond
to distributed vectors. The only communication is necessary for the evaluation of the inner
products, the preconditioner, the projection and the operations involving the coarse solver
(G>QG)−1.

3.3 Condition number estimates for one-level BETI preconditioners

In this section, we give the condition number estimates for the preconditioners introduced
in the last subsection. First, in Section 3.3.1 we state some basic results and specify the
operator Q which appears in the projections P and P>. Secondly, we need to introduce
an extension indicator in Section 3.3.2 before we state our main result, Theorem 3.1, and
related material in Section 3.3.3. The main proof relies first on an estimate concerning the
extension indicator which is formulated in Lemma 3.11 and secondly on a special stability
result stated in Lemma 3.12. In Section 3.3.4 we elaborate technical tools which we need for
the proofs of Lemma 3.11 and Lemma 3.12 which are finally presented in Section 3.3.5 and
Section 3.3.6.

3.3.1 Basic results and the operator Q

We define the energy semi-norms

|wi|Si,h
:= 〈Si,hwi, wi〉1/2 for wi ∈ Wi ,

|w|S :=
( ∑

i∈I
|w|2Si,h

)2
for w ∈ W ,

and the subspaces

(ker Si,h)⊥ := {w ∈ Wi : (w, z)L2(Γi) = 0 ∀z ∈ ker Si,h}
(ker S)⊥ := {w ∈ W : wi ∈ (ker Si,h)⊥ ∀i ∈ I} .

Note, that | · |Si,h
is a norm on (kerSi,h)⊥ and | · |S is a norm on (kerS)⊥.

First, we prove that the preconditioner M−1 defined in Section 3.2 is SPD on Ṽ ′.3

Lemma 3.7. If Q is SPD on range G, then M−1 is SPD on Ṽ ′, i. e.,

〈M−1µ, µ〉 > 0 ∀µ ∈ Ṽ ′ \ {0} .

3In the standard literature, e. g., in [49, 87], the theory is only proved for the diagonal choice of Q. For
Q = M−1 the definiteness is not shown explicitly. The above lemma shall fix this gap.
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Proof. From the definitions (3.27) and (3.29), we see that M−1 is symmetric and positive
semi-definite, and so M−1 is symmetric and positive semi-definite on Ṽ ′. To show the
definiteness we assume that 〈µ, M−1µ〉 = 0 for some µ ∈ Ṽ ′. Since µ ∈ range B, we can find
a w ∈ W with B w = µ. Setting w̃ = PD w we also have B w̃ = µ, cf. Lemma 3.3, and since
PD is a projection we have PD w̃ = w̃. Applying Corollary 3.6 we obtain that

0 = 〈µ, M−1µ〉 = 〈B w̃, M−1B w̃〉 = |PD w̃|2S = |w̃|2S ,

We conclude that w̃ ∈ ker S. From the definition of Ṽ ′ (cf. (3.19)) we know that

〈B w̃, Q B w̃〉 = 〈B w̃, Q µ〉 = 0 .

because µ ∈ Ṽ ′. Finally, since Q is SPD on range G which is the image of ker S under B, we
obtain that B w̃ = 0. Therefore, also µ = 0 which proves the definiteness.

Lemma 3.7 justifies to define an operator M : V/ ker B> → Ṽ ′ as the inverse of Π̃>P M−1 :
Ṽ ′ → V/ ker B> , see Remark 3.4. Following the proof by Klawonn and Widlund, we show that
for some λmin, λmax > 0,

λmin〈M λ, λ〉 ≤ 〈F λ, λ〉 ≤ λmax〈M λ, λ〉 ∀λ ∈ V/ ker B> . (3.31)

Then λmax/λmin is an upper bound for the condition number κ(P M−1P>F ) on V/ ker B> .
First, we need several technical lemmas.

Throughout this work, we agree that writing sup
x∈X

a(x)
b(x) implicitly excludes those x from X

with a(x) = b(x) = 0.

Lemma 3.8. Let Q be SPD on V ′. Then the following identities hold:

〈F λ, λ〉 = sup
w∈W

〈B w, λ〉2

|w|2S
= sup

w∈ker S⊥

〈B w, λ〉2

|w|2S
∀λ ∈ V , (3.32)

〈M λ, λ〉 = sup
µ∈eV ′

〈µ, λ〉2

〈µ, M−1µ〉
∀λ ∈ V/ ker B> , (3.33)

〈B w, M−1B w〉 = |PD w|2S ∀w ∈ W . (3.34)

Proof. The proof has been presented in [49, 87]. By the definition of S†, S̃ and Lemma A.2
we get for λ ∈ V :

〈F λ, λ〉 = 〈B>λ, S†B>λ〉 = 〈B>λ, S̃−1B>λ〉 = sup
w∈W

〈B>λ, w〉2

〈S̃ w, w〉

= sup
w∈W

〈B w, λ〉2

〈S w, w〉+
∑

i∈Ifloat

βi(wi ,1Γ)2L2(Γi)

= sup
w∈W

〈B w, λ〉2

|w|2S
.

In the last step we have used that βi ≥ 0 and that (wi, 1Γ)L2(Γi) = 0 for wi ∈ (ker Si,h)⊥.
Note, that supw∈W 〈B w, λ〉2/|w|2S is well-defined due to our convention on suprema, since
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|w|S = 0 implies 〈B w, λ〉 = 0 for λ ∈ V . For w ∈ W , w0 ∈ ker S and λ ∈ V , one easily
shows the shift invariances

〈B (w + w0), λ〉 = 〈B w, λ〉 and |w + w0|S = |w|S , (3.35)

and altogether, this proves (3.32). The second identity, (3.33), follows from the definition of
M and the fact that the dual of V/ ker B> is isomorphic to Ṽ ′, see also the remark on page 27.
The third formula (3.34) follows directly from Corollary 3.6.

Lemma 3.9. Let Q be SPD on range G and symmetric positive semi-definite on U∗. Then,
for any w ∈ W , there exists a unique zw ∈ ker S such that B(w + zw) ∈ V ′. Moreover,

zw = argmin
z∈ker S

‖B (w + z)‖Q , and ‖B zw‖Q ≤ ‖B w‖Q ,

where ‖µ‖Q := 〈µ, Qµ〉1/2. The mapping w 7→ zw is linear.

Proof. See [49, 87]. There, zw is explicitly constructed by

zw = −R (G>QG)−1G>QB w ,

from where we see that zw depends linearly on w.

Up to now, we have not specified our operator Q : U∗ → U which appears in the projections
P , P>. For the standard case, Klawonn and Widlund (cf. [49, 87]) propose either setting
Q = M−1 or a special diagonal choice of Q which we generalize for the all-floating case in
the following.

The choice Q = M−1. In this case, it remains to show that M−1 is SPD on range G, such
that the projections P , P> are well-defined and that the assumptions of Lemma 3.7 and
Lemma 3.9 are fulfilled. Note, that with Lemma 3.7, Q is automatically SPD on V ′, and
thus the assumption of Lemma 3.8 is satisfied.

Lemma 3.10. M−1 is symmetric positive definite on range G, i. e.,

〈B z, M−1B z〉 > 0 for z ∈ ker S \ {0} .

Proof. We have already seen that M−1 is symmetric and positive semi-definite. Assume
that 〈B z, M−1B z〉 = 0 holds for some z ∈ ker S. Due to Corollary 3.6, |PD z|2S = 0, and
so PD z = z − ED z ∈ ker S. Consequently, ED z ∈ ker S which means that each component
of ED z is constant on Γi. However, ED z is continuous across subdomain interfaces and
satisfies the homogeneous Dirichlet boundary conditions (if present). Additionally, if 0 ∈ I,
we know that z0 = 0. Since two arbitrary subdomains can be connected via a path through
subdomain faces, an elementary argument shows that z ≡ 0. From this we finally conclude
that B z = 0 which shows the definiteness.

Remark 3.8. The choice Q = M−1 is of course expensive because it means for every appli-
cation of P , P> one more application of M−1; additionally the application of (G>QG)−1

becomes more complicated. The following choice is much cheaper from the computational
point of view, although it turns out that a more careful analysis is required.



36 3 ONE-LEVEL BETI METHODS

A diagonal choice of Q. A second possibility is to choose Q diagonal with respect to
the basis µx,ij , µx,i which we have introduced in Section 3.1.1. This means, Q is uniquely
defined by specifying

〈µx,ij , Qµx,ij〉 =: Q[µx,ij ] for x ∈ (Γi,h ∩ Γj,h) \ ΓD ,

〈µx,i, Qµx,i〉 =: Q[µx,i] for x ∈ Γi,h ∩ ΓD .

In three dimensions, we set for x ∈ (Γi,h ∩ Γj,h) ∩ ΓI ,

Q[µx,ij ] =


min(αi, αj)

(
1 + log

(
HF
hi

)) h2
i

HF
for x ∈ F ∈ Fi ∩ Fj ,

min(αi, αj)hi for x ∈ E ∈ Ei ∩ Ej ,

min(αi, αj)hi for x = V ∈ Vi ∩ Vj ,

(3.36)

whereas in two dimensions we set

Q[µx,ij ] =
{

min(αi, αj)
(
1 + log

(
HE
hi

))
hi
HE

for x ∈ E ∈ Ei ∩ Ej ,

min(αi, αj) for x = V ∈ Vi ∩ Vj .
(3.37)

For the all-floating formulation, we define the additional entries for x ∈ Γi,h ∩ ΓD by

Q[µx,i] =


αi

(
1 + log

(
HF
hi

)) h2
i

HF
for x ∈ F ∈ Fi ,

αi hi for x ∈ E ∈ Ei ,

αi hi for x = V ∈ Vi ,

(3.38)

in three dimensions, and

Q[µx,i] =
{

αi

(
1 + log

(
HE
hi

))
hi
HE

for x ∈ E ∈ Ei ,

αi for x = V ∈ Vi .
(3.39)

in two dimensions. Note, that by Assumption 3.2 (page 25) we have no Lagrange multi-
pliers of the form µx,0, i. e., no Lagrange multipliers on Γ0 that enforce Dirichlet boundary
conditions, even in the all-floating formulation.

For the case of non-redundant Lagrange multipliers, we need an additional restriction,
namely that the constraints are chosen according to the ’fork’ distribution depicted in Fig-
ure 6 (page 22), where the distinguished node lies on the boundary of the subdomain with
the locally largest coefficient, cf. [49, 87].

3.3.2 The extension indicator

The following two definitions and the following lemma are needed to obtain good condition
number estimates for the one-level BETI method in the case of certain geometric configura-
tions, in particular if interior Dirichlet boundary conditions are present.

Definition 3.1. The extension indicator γh({Ωi}, Γ0, ΓD), depending on the domain de-
composition {Ωi}i∈I , on the geometry of the boundary Γ0, the Dirichlet boundary ΓD and
the discretization (indicated by h), is defined by

γh({Ωi}, Γ0, ΓD) := sup
uh ∈ V h

1 (Γ0)
uh|Γ0∩ΓD

= 0

|Hint
0,D uh|2H1(Ωint)

|Hint uh|2H1(Ωint)
+ 1

diamΓ0
‖uh‖2

L2(Γ0)

. (3.40)
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Figure 8: Two ring-shaped configurations of Ωint, Γ0 and ΓD. Left: η ' H0. Right: η � H0.

Here, Hint denotes the unrestricted discrete harmonic extension from Γ0 to the open, bounded
domain Ωint defined by

Ωint :=
⋃

i∈I\{0}

Ωi .

I. e., for uh ∈ V h
1 (Γ0)

Hint uh := argmin
ũh ∈ V h

1 (Ωint)
ũh|Γ0 = uh

|ũh|2H1(Ωint)
.

The operator Hint
0,D denotes the minimal discrete harmonic extension from Γ0 to Ωint that

satisfies the homogeneous Dirichlet boundary conditions on ΓD \ Γ0, i. e.,

Hint
0,D uh := argmin

ũh ∈ V h
1 (Ωint)

ũh|Γ0 = uh

|ũh|2H1(Ωint)
.

Definition 3.2. The shape parameter η > 0 of Ωint is defined as the largest number such
that the boundary layer

Ωint,η := {x ∈ Ωint : dist (x, Γ0) < η} ,

can be decomposed into shape-regular patches {ωj}j∈J (or covered by them such that
⋃

i∈J ωj ⊂
Ωint), where diam ωj = O(η) and measd−1(∂ωj ∩ Γ0) = O(ηd−1) for all j ∈ J , see also Fig-
ure 8 and Figure 9.

Lemma 3.11. Let w0 ∈ V1,D(Γ0) be an arbitrary discrete function on the boundary Γ0

fulfilling the Dirichlet boundary conditions on Γ0 ∩ ΓD. Then the following estimates hold.

(i) If ΓD \ Γ0 is empty we have

γh({Ωi}, Γ0, ΓD) = 1

(ii) If dist (ΓD \ Γ0, Γ0) > 0, we have

γh({Ωi}, Γ0, ΓD) � H0

dist (ΓD \ Γ0, Γ0)
.
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Figure 9: A configuration where ΓD touches Γ0. Right: Construction of the patches ωj

according to Definition 3.2.

(iii) Otherwise, if ΓD \ Γ0 touches Γ0 (according to Assumption 3.2, page 25),

γh({Ωi}, Γ0, ΓD) � H0

η

(
1 + log

(η

h

))2

holds, with the shape parameter η > 0 due to Definition 3.2.

Proof. We postpone the proof to Section 3.3.4

Remark 3.9. In general, estimate (ii) in Lemma 3.11 is sharp. For the two-dimensional
ring-shaped domain depicted in Figure 8, right, one can easily show that for w0 ≡ 1,

|Hint
0,D w0|2H1(Ωint)

� H0

η

1
H0

‖w0‖2
L2(Γ0) .

The same result can be obtain for the corresponding three-dimensional geometry (a cube
with a smaller cube cut out).

Remark 3.10. For certain geometries (in particular since there are no constraints from the
Neumann boundary ΓN on the extension Hint

0,D w0), there might exist a larger η > 0 than
the one in Definition 3.2 fulfilling the estimate in Lemma 3.11. On the other hand, we see
from Assumption 2.2 that η ≤ minF∈F0 HF .

3.3.3 Main result

Before the main theorem, we state a stability estimate which is crucial in all FETI-type
condition number estimates (cf. [87]). For the specific case of the unbounded domain we
need a further regularity assumption on Ω0.

Assumption 3.3. The domain Ωint satisfies an exterior cone condition. More precisely, we
can add a layer of auxiliary subdomains around Ωint that together with the subdomains Ωi,
i 6= 0 form a shape-regular coarse triangulation.

Lemma 3.12. Assume that α0 ≥ αi for all i ∈ I and that Assumptions 3.1, 3.2 and 3.3 hold.
Furthermore, in two dimensions we require diam Γ0 = O(1). Additionally, let Q = M−1 or
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let Q be given by the diagonal choice above. Then, for any w ∈ (ker S)⊥ and for the unique
zw given by Lemma 3.9, we have

|PD(w + zw)|2S ≤ C γh({Ωi}, Γ0, ΓD) (1 + log(H/h))2 |w|2S .

Note, that H/h is the maximal ratio of Hij/hi, and not Hi/hi. The extension indicator
γh({Ωi}, Γ0, ΓD) can be bounded due to Lemma 3.11.

Additionally, the estimate

|PD(w + zw)|2S ≤ C max
F∈F0

H0

HF
(1 + log(H/h))2 |w|2S ,

holds, even without the assumption α0 ≥ αi.

Proof. We postpone the proof of this lemma to Section 3.3.6.

Theorem 3.1. Assume that the assumptions of Lemma 3.12 are fulfilled. Then the BETI
preconditioners M−1 given in Section 3.2 satisfy the condition number estimates

κ(P M−1P>F P ) ≤ C γh({Ωi}, Γ0, ΓD) (1 + log(H/h))2 ,

under the assumption α0 ≥ αi, and

κ(P M−1P>F P ) ≤ C max
F∈F0

H0

HF
(1 + log(H/h))2 ,

without this assumption. Both estimates are to be understood in the factor space modulo
ker B>. Note, that importantly H/h is the maximal ratio of the interface diameters Hij and
the local mesh size hi, and not maxi∈I Hi/hi. The constant C is independent of the mesh
parameters hi, the domain diameters Hi, the interface diameters Hij, the exponent γ and
the coefficients αi, and depends only on the shapes of the subdomains.

Proof. The proof is based on the results stated in Lemma 3.8 and Lemma 3.12 and follows
exactly the line of the corresponding proofs in [58, 49, 87]. We give bounds for the eigenvalues
in (3.31).

Lower bound. We show

〈F λ, λ〉 ≥ 〈M λ, λ〉 ∀λ ∈ V/ ker B> . (3.41)

Let us fix µ ∈ Ṽ ′ arbitrary. Since range B = U∗ we can find a w̃ ∈ W such that B w̃ = µ.
For ŵ := PD w̃, we obtain µ = B ŵ as well due to Lemma 3.3. Using formulas (3.32) and
(3.34) from Lemma 3.8, we conclude that, ∀λ ∈ V/ ker B> ,

〈F λ, λ〉
(3.32)

≥ 〈B ŵ, λ〉2

|ŵ|2S
=

〈µ, λ〉2

|PD w̃|2S
(3.34)
=

〈µ, λ〉2

〈B w̃, M−1B w̃〉
=

〈µ, λ〉2

〈µ, M−1µ〉
,

Since µ ∈ V ′ was arbitrary, we can apply formula (3.33) and finally obtain (3.41).

Upper bound. We show

〈F λ, λ〉 ≤ C (1 + log(H/h))2 〈M λ, λ〉 ∀λ ∈ V/ ker B> . (3.42)
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By Lemma 3.9, for any w ∈ (ker S)⊥ there exists a unique zw ∈ ker S such that B(w + zw) ∈
Ṽ ′. We fix now an arbitrary λ ∈ V/ ker B> . Apparently, 〈B zw, λ〉 = 0. Using Lemma 3.8
(formulas (3.32) and (3.33)), Lemma 3.12 and Corollary 3.6 we obtain

〈M λ, λ〉 = sup
µ∈eV ′

〈µ, λ〉2

〈µ, M−1µ〉

≥ sup
w∈(ker S)⊥

〈B (w + zw), λ〉2

〈B(w + zw), M−1B(w + zw)〉

= sup
w∈(ker S)⊥

〈B w, λ〉2

|PD(w + zw)|2S

≥ 1

C∗
(
1 + log

(
H
h

))2 sup
w∈(ker S)⊥

〈B w, λ〉2

|w|2S

=
1

C∗
(
1 + log

(
H
h

))2 〈F λ, λ〉 .

In the third line we have used and the fact that λ ∈ V// ker B> . Moreover, C∗ represents the
two possible terms in the estimates of PD, see Lemma 3.12.

Remark 3.11. The assumption α0 ≥ αi is, e. g., fulfilled in magnetostatic computations,
where the reluctivity coefficient in the exterior space is usually that of free space, 1/µ0, and
all other material coefficients equal 1/(µ0µr) for some µr ≥ 1.

Two the main ingredients in the proof of Theorem 3.1 are on one hand Lemma 3.11
concerning the extension indicator and on the other hand the estimate stated in Lemma 3.12.
Some technical tools for both proofs shall be elaborated in the sequel.

3.3.4 Technical tools

In this section we provide technical tools which we need for the proof of Lemma 3.12. The
first class of tools concerning discrete Sobolev type inequalities is an extension of the results
summarized in [87, Chapter 4].

Definition 3.3. For V ∈ Vi, E ∈ Ei, F ∈ Fi, we define θV , θE, θF ∈ V h
1 (Γi) by

θV (x) :=
{

1 x = V
0 else

θE(x) :=
{

1 x ∈ E
0 else

θF (x) :=
{

1 x ∈ F
0 else

where x ∈ Γi,h.

By Ih we denote the nodal interpolator operator mapping the continuous functions on Γi

onto V h
1 (Γi). We mention that Ih is stable in the H1/2-norm for quadratic functions. For

details see, e. g., [87, Chapter 4 and Appendix B].
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Figure 10: Left: The auxiliary domain Ω̂ ⊂ Ω0 with its non-overlapping decomposition.
Right: A configuration of Ω0 with a small geometric angle.

The functions in Definition 3.3 induce the following partition of unity on Γi,∑
V ∈Vi

θV (x) +
∑
E∈Ei

θE(x) +
∑

F∈Fi

θF (x) = 1 ∀x ∈ Γi .

Hence, for any u ∈ V h
1 (Γi), we have

u =
∑
V ∈Vi

Ih(θV u) +
∑
E∈Ei

Ih(θE u) +
∑

F∈Fi

Ih(θF u) . (3.43)

Definition 3.4. In three dimensions, we define for each vertex V ∈ Vi its corresponding
vertex patch ω

(i)
V , regarded as an open set, by

ω
(i)
V :=

⋃
F∈Fi,V ∈F

F ,

and for each subdomain edge E ∈ Ei its edge patch ω
(i)
E , regarded as an open set, by

ω
(i)
E :=

⋃
F∈Fi,E⊂F

F .

For a simplified notation, we define the face patch of a face as the face itself, i. e., ω
(i)
F := F

for F ∈ Fi. The analogous definitions in two dimensions should be obvious.

In the following, we introduce special discrete H1/2- and H
1/2
00 -norms on the subdomain

boundaries, faces, and edge and vertex patches. First, we need to construct some auxiliary
subdomains in order to cope with the distinguished case of the unbounded domain Ω0.

We consider a bounded domain Ω̂ ⊂ Ω0 with

{x ∈ Ω0 : dist (x, Γ0) < HF (x)} ⊂ Ω̂ ⊂ {x ∈ Ω0 : dist (x, Γ0) < 2HF (x)} ,



42 3 ONE-LEVEL BETI METHODS

where HF (x) = diam argminF∈F0
dist (x, F ) denotes the diameter of the face on Γ0 that is

next to x. The domain Ω̂ should be chosen in such a way, that it can be decomposed into
shape-regular non-overlapping subdomains Ω̂j ,

Ω̂ =
⋃
j∈bI

Ω̂j ,

where the subdomains Ω̂j should satisfy the requirements of Assumption 2.2. Note, that this
construction is always possible if Assumption 3.3 holds, whereas it would not be possible in
the case of very small angles as depicted in Figure 10, right. Hence, we exclude these cases
in our considerations.4

Moreover, the subdomain faces, edges and vertices on Γ0 are again subdomain faces, edges
and vertices of the decomposition of Ω̂. Thus, we can associate to each face F ∈ F0 an index
jF such that Ω̂jF touches F ; see also Figure 10, left.

We denote by Êj the subset of edges in E0 that touch Ω̂j , and analogously by V̂j the set
of vertices in V0 touching Ω̂j . Finally, we introduce quasi-uniform triangulations on Ω̂j with
the mesh size h0 such that the grids match on Γ0 and on the interfaces between the domains
Ω̂j .

Definition 3.5. Let F be the face shared by Ωi and Ωj. For a function u ∈ V h
1 (F ) vanishing

on ∂F , we define the following H
1/2
00 -norm,

|u|
H

1/2
00 (F )

:=


min

(
|u|

H
1/2
00 (F,Ωi)

, |u|
H

1/2
00 (F,Ωj)

)
for i, j 6= 0 ,

min
(
|u|

H
1/2
00 (F, bΩjF

)
, |u|

H
1/2
00 (F,Ωj)

)
for i = 0 ,

min
(
|u|

H
1/2
00 (F,Ωi)

, |u|
H

1/2
00 (F, bΩjF

)

)
for j = 0 ,

where
|u|

H
1/2
00 (F,D)

:= min
{
|v|H1(D) : v ∈ V h

1 (D), v|F = u, v|∂D\F = 0
}

.

Apparently, |u|
H

1/2
00 (F,D)

is only well-defined if u|∂F = 0. For faces on ∂Ω we define the

H
1/2
00 -norm as the H1-norm of the minimal extension to the adjacent subdomain, or auxiliary

subdomain. Additionally, we define the corresponding norms on vertex and edge patches,

|u|
H

1/2
00 (ω

(i)
V )

:= min
{
|v|H1(Ωi) : v ∈ V h

1 (Ωi), v|
ω

(i)
V

= u, v|
Γi\ω

(i)
V

= 0
}

,

|u|
H

1/2
00 (ω

(i)
E )

:= min
{
|v|H1(Ωi) : v ∈ V h

1 (Ωi), v|
ω

(i)
E

= u, v|
Γi\ω

(i)
E

= 0
}

,

for i 6= 0 and

|u|
H

1/2
00 (ω

(0)
V )

:= min
{
|v|

H1(bΩV )
: v ∈ V h

1 (Ω̂V ), v|
ω

(0)
V

= u, v|
∂ΩV \ω

(0)
V

= 0
}

,

|u|
H

1/2
00 (ω

(0)
E )

:= min
{
|v|

H1(bΩE)
: v ∈ V h

1 (Ω̂E), v|
ω

(0)
E

= u, v|
∂ΩE\ω

(0)
E

= 0
}

,

4In such cases also the constants c
(0)
0 and c

(0)
K would probably reflect this bad behaviour anyway.
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with the open, simply connected domains Ω̂V , Ω̂E defined by

Ω̂V :=
⋃

j:V ∈bVj

Ω̂j , Ω̂E :=
⋃

j:E∈bEj

Ω̂j ,

Furthermore, we define the full H1/2-norms and H1/2-semi-norms employing the same def-
initions, but dropping the zero boundary conditions and (only for the full norms) adding
properly scaled L2-terms, e. g., for i, j 6= 0,

‖u‖H1/2(F ) := min
(
‖u‖H1/2(F,Ωi)

, ‖u‖H1/2(F,Ωj)

)
,

where

‖u‖H1/2(F,D) := min
{(
|v|2H1(D) +

1
(diamD)2

‖v‖2
L2(D)

)1/2
: v ∈ V h

1 (D), v|F = u
}

.

The analogue definitions in two dimensions should be obvious.

Lemma 3.13. Let the discrete norms | · |
H

1/2
00

(F ) etc. be defined according to Definition 3.5.
In three dimensions, assume that i ∈ I, V ∈ Vi, E ∈ Ei and F ∈ Fi, such that V is one of
the end points of E, and E ⊂ ∂F . Then there exists a constant C > 0 depending only on
the shapes of those domains Ωi and Ω̂j that touch V , E, or F , such that for all u ∈ V h

1 (Γi),

(i) |Ih(θF u)|2
H

1/2
00 (F )

≤ C (1 + log(HF /hi))2 ‖u‖2
H1/2(F )

,

(ii) |Ih(θV/E u)|2
H

1/2
00 (ω

(i)
V/E

)
≤ C (1 + log(HF /hi)) ‖u‖2

H1/2(F )
,

(iii) |θF |2
H

1/2
00 (F )

≤ C (1 + log(HF /hi))HF ,

(iv) |θE |2
H

1/2
00 (ω

(i)
E )

≤ C HE ,

(v) |θV |2
H

1/2
00 (ω

(i)
V )

≤ C hi ,

(vi) ‖u‖2
L2(E) ≤ C (1 + log(HF /hi))‖u‖2

H1/2(F )
.

In (ii), “θV/E” means that we can either use θV or θE. In two dimensions, the analogous
estimates

(vii) |Ih(θE u)|2
H

1/2
00 (E)

≤ C (1 + log(HE/hi))2 ‖u‖2
H1/2(E)

,

(viii) |Ih(θV u)|2
H

1/2
00 (ω

(i)
V )

≤ C (1 + log(HE/hi)) ‖u‖2
H1/2(E)

,

(ix) |θE |2
H

1/2
00 (E)

≤ C (1 + log(HE/hi)) ,

(x) |θV |2
H

1/2
00 (ω

(i)
V )

≤ C

hold. The bounds are known to be sharp (cf., e. g., [12]).

Proof. We give the proof in three dimensions, using the face and edge estimates stated in
[87, Chapter 4].
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First, we recall the definition of our discrete H1/2-norm on F . For simplicity, we assume
that F is shared by Ωi and Ωj with i, j 6= 0, and thus HF ' Hi ' Hj by Assumption 2.2.
Let ũi ∈ V h

1 (Ωi), ũj ∈ V h
1 (Ωj) denote the minimizers such that

‖u‖2
H1/2(F,Ωk)

= |ũk|2H1(Ωk) +
1

H2
k

‖ũk‖2
L2(Ωk)

and ũk|F = u|F for k = i, j.

Face terms – (i) and (iii): By [87, Lemma 4.24], we obtain for k = i, j

|Ih(θF u)|2
H

1/2
00 (F,Ωk)

� (1 + log(HF /hk))2
[
|ũk|2H1(Ωk) +

1
H2

k

‖ũk‖2
L2(Ωk)

]
.

By Definition 3.5 we get (i). [87, Lemma 4.25] yields

|θF |2
H

1/2
00 (F,Ωk)

� (1 + log(HF /hk))HF ,

which implies (iii).

Edge terms – (ii), (iv) and (vi): [87, Lemma 4.16] states

‖u‖2
L2(E) � (1 + log(HF /hk))

[
|ũk|2H1(Ωk) +

1
H2

k

‖ũk‖2
L2(Ωk)

]
,

which implies (vi). Furthermore, [87, Lemma 4.19] gives

|Ih(θE u)|2
H

1/2
00 (ω

(i)
E ,Ωi)

� ‖Ih(θE u)‖2
L2(E) � ‖u‖2

L2(E)

� (1 + log(HF /hk))
[
|ũk|2H1(Ωk) +

1
H2

k

‖ũk‖2
L2(Ωk)

]
,

for k = i, j. This gives (ii). From the first line of the last estimate we immediately obtain

|θE |2
H

1/2
00 (ω

(i)
E )

� ‖1‖2
L2(E) � HE ,

which is (iv).

Vertex terms – (ii) and (v): Using our triangulation, we can estimate |Ih(θV u)|2
H

1/2
00 (ω

(i)
V ,Ωi)

from above by |u(V ) ϕ
(k)
V |2H1(Ωk) ' hk u(V )2, for k = i, j, where ϕ

(k)
V is the finite element

hat function on the triangulation Th(Ωk) corresponding to the vertex V . This proves (v)
by setting u ≡ 1. For (ii), apparently, the last term can be bounded by the square of the
L2-norm of u on the edge E, and we can proceed as in the estimates for the edge terms.

The estimates for vertices, edges and faces touching Ω0, the proof works analogously, except
one has to use the auxiliary subdomains Ω̂j in Definition 3.5. The essential point is, that
the domains Ω̂j have comparable diameters to those of the faces on Γ0.

Lemma 3.14 (discrete Poincaré-Friedrichs inequality). In three dimensions, for i ∈ I, we
fix a face F ∈ Fi and a function u ∈ V h

1 (F ). Assume that for i 6= 0, u vanishes on a
subdomain edge E ∈ Ei, and for i = 0, that v vanishes on an edge E ⊂ ∂F . Then,

1
HF

‖u‖2
L2(F ) ≤ C (1 + log(HF /hi)) |u|2H1/2(F )

.
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In two dimensions, we fix an edge E ∈ Ei. Then,
1

HE
‖u‖2

L2(E) ≤ C (1 + log(HE/hi)) |u|2H1/2(E)
,

if u ∈ V h
1 (E) vanishes at a vertex V ∈ Vi for i 6= 0 and V ∈ ∂E for i = 0.

Proof. The three-dimensional result follows immediately from [87, Lemma 4.21]. In two
dimensions, we have that H−1

E ‖u‖2
L2(E) � ‖u‖2

L∞(E) and the desired estimate follows from
[87, Lemma 4.15].

The next lemma gives an estimate for the difference of mean values of H1-functions, and
will be needed for the coarse-space contributions of the one-level BETI preconditioners.

Lemma 3.15. Let Ωi, Ωj be two neighboring subdomains with comparable diameters Hi ' Hj

and volumes |Ωi| ' |Ωj | ' Hd
i , and let U be an open, simply connected domain with a

Lipschitz boundary, such that Ωi ∪ Ωj ⊂ U , and diamU ' Hi, and |U| ' |Ωi|. Then, for
some CZ > 0 depending only on the shape of U ,

min(Hi, Hj)d−2|zi − zj |2 ≤ CZ |u|2H1(U) ∀u ∈ H1(U) ,

where
zi =

1
|Ωi|

∫
Ωi

u(x) dx , zj =
1
|Ωj |

∫
Ωj

u(x) dx .

Proof. We use the Bramble-Hilbert lemma [5]. First, we assume that diamU = O(1). We
define the linear functional φ : H1(U) → R by

φ(u) :=
1
|Ωi|

∫
Ωi

u(x) dx− 1
|Ωj |

∫
Ωj

u(x) dx .

Obviously, φ vanishes for the constant functions in U . Hence, there exists a constant ĈZ

such that
|φ(u)| ≤ ĈZ |u|H1(U) .

The desired estimate involving the factor min(Hi, Hj)d−2 can be obtained by delation from
a domain of unit diameter.

The following lemma states how discrete functions can be split into face terms and be
composed from face, edge and vertex terms, with respect to the Si,h energy forms.

Lemma 3.16. Let the discrete H1/2- and H
1/2
00 -norm be defined according to Definition 3.5.

Then the following stability estimates hold.

(i) For all i ∈ I and u ∈ V h
1 (Γi) we have

|u|2Si,h
≤ C1

∑
V ∈Vi,E∈Ei,F∈Fi

αi |Ih(θV/E/F u)|2
H

1/2
00 (ω

(i)
V/E/F

)
,

where in two dimensions, we have to drop the face terms.5

5The notation θV/E/F is a short hand for writing three sums, one over vertices, one over edges and the
thrid over faces.
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(ii) For all i ∈ I and w ∈ V h
1 (Γi) we have∑

F∈Fi

αi |w|2H1/2(F )
≤ C2 |w|2Si,h

,

where in two dimensions the faces must be replaced by edges.

The constants C1 and C2 depend only on the shape of Ωi.

Proof. Part (i): First, we recall, that by Lemma 2.3,

|u|2S0,h
≤ α0 |u|2S0

= α0 min
v∈H1

loc(Ω0)

v|Γ0
=u

|v|2H1(Ω0) ,

|u|2Si,h
≤ αi min

v∈V h
1 (Ωi)

v|Γi
=u

|v|2H1(Ωi)
.

For all V ∈ Vi, E ∈ Ei, F ∈ Fi, let vV , vE , vF ∈ V h
1 (Ωi) be the minimizers in Definition 3.5

such that
|vV/E/F |H1(Ωi) ' |Ih(θV/E/F u)|

H
1/2
00 (ω

(i)
V/E/F

)
.

In order to justify above formula we need a “mirror” argument showing that the H1-norms of
the extensions of a function on a face to each of the two adjacent subdomains are equivalent.
This can be done with the help of an extension Lemma and the Scott-Zhang interpolation
operator [79].

Note, that for i = 0, the support of vF is contained in Ω̂jF and the support of vV and vE

in Ω̂V and Ω̂E , respectively, see also Definition 3.5. We define ṽ ∈ V h
1 (Ω) by

ṽ :=
∑
V ∈Vi

vV +
∑
E∈Ei

vE +
∑

F∈Fi

vF .

Clearly, ṽ|Γi = u, and we can conclude that |u|2Si,h
≤ αi|ṽ|2H1(Ωi)

. Since the supports of the
functions vV , vE , vF have a finite overlap in Ωi (in particular for i = 0), we finally obtain by
a coloring argument (cf., e. g., [87, Chapter 2]) that

|u|2Si,h
≤ αi C1

{ ∑
V ∈Vi

|vV |2H1(Ωi)
+

∑
E∈Ei

|vE |2H1(Ωi)
+

∑
F∈Fi

|vF |2H1(Ωi)

}
,

which proves the desired statement.

Part (ii): First we deal with the case i 6= 0. We denote by w̃ ∈ V h
1 (Ωi) the minimizer with

w̃|Γi = w and

|w̃|2H1(Ωi)
= |w|2

Sint
i,FEM

. (3.44)

Note, that Si,h may either be αi S
int
i,FEM or αi S

int
i,BEM (cf. Section 2.5). In the second case,

Lemma 2.3 yields

|w|2
Sint

i,FEM
≤ C

(i)
T |w|2Si

≤ C
(i)
T

c
(i)
K

c
(i)
0

|w|2
Sint

i,BEM
.
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Furthermore, since the cardinality of Fi is small for i 6= 0, we obtain from the Cauchy-
Schwarz inequality and (3.44) that∑

F∈Fi

αi|w|2H1/2(F )
� αi |w̃|2H1(Ωi)

� αi |w|2Sint
i,FEM

.

Putting the last two estimates together yields the desired statement.

For i = 0, we denote by w̃ ∈ V h
1 (Ωc

0) the minimizer such that

|w̃|2H1(Ωc
0) = |w|2

Sint
0,FEM

.

Then we obtain by a finite summation argument that∑
F∈F0

α0|w|2H1/2(F )
�

∑
j∈I\{0}
F0∩Fj 6=∅

α0 |w̃|2H1(Ωj)
� α0 |w̃|2H1(Ωc

0) � |w|2
Sint

0,FEM
.

Finally, we know by Lemma 2.3 that

|w|2
Sint

0,FEM
≤ C

(0)
T

c
(0)
K

c
(0)
0

|w|2Sext
0,BEM

.

Next, we focus the missing proof of Lemma 3.11 concerning the extension indicator.

3.3.5 Proof of Lemma 3.11

First, we repeat the statement of Lemma 3.11. Let w0 ∈ V1,D(Γ0) be an arbitrary discrete
function on the boundary Γ0 fulfilling the Dirichlet boundary conditions on Γ0 ∩ ΓD. Then
the following estimates hold.

(i) If ΓD \ Γ0 is empty we have
γh({Ωi}, Γ0, ΓD) = 1

(ii) If dist (ΓD \ Γ0, Γ0) > 0, we have

γh({Ωi}, Γ0, ΓD) � H0

dist (ΓD \ Γ0, Γ0)
.

(iii) Otherwise, if ΓD \ Γ0 touches Γ0 (according to Assumption 3.2, page 25),

γh({Ωi}, Γ0, ΓD) � H0

η

(
1 + log

(η

h

))2

holds, with the shape parameter η > 0 due to Definition 3.2.
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The proof borrows several techniques from [87, Chapter 3] (see in particular Lemma 3.10),
and recent works by Graham, Lechner and Scheichl [37], and Scheichl and Vainikko [78].

Part (i) is trivial.

Part (ii): First, we observe that for the choice η := dist (ΓD \ Γ0, Γ0) > 0 we can find
a finite covering of the domain Ωint,η by shape-regular patches of diameter η, similar to
Definition 3.2. Let {ωj}j∈J denote this covering and define u ∈ V h

1 (Ωint) by u = Hint w.

For the given η, we can find a cutoff function χ ∈ V h
1 (Ωint) such that

(a) χ(x) ∈ [0, 1] ∀x ∈ Ωint,

(b) χ|Γ0 = 1 and χ vanishes entirely on Ωint \ Ωint,η, in particular χ|ΓD\Γ0
= 0,

(c) ‖∇χ‖L∞(Ωint) � 1/dist (ΓD \ Γ0, Γ0) ' 1/η.

These properties can, e. g., be obtained by the following definition of χ: For the finite element
nodes x ∈ Ωint,h we set

χ(x) :=
{

1− dist (x, Γ0)/η for dist (x, Γ0) ≤ η ,
0 else,

which uniquely defines χ. Properties (a) and (b) are easy to see. For (c) we observe that for
a finite element T ,

‖∇χ‖L∞(T ) �
∑

V 6=V ′∈VT

|χ(V )− χ(V ′)|
|V − V ′|

,

where VT is the set of vertices of the element T . It is not hard to see that for above definition
of χ,

|χ(V )− χ(V ′)|
|V − V ′|

≤ 1
η

.

Since the number of vertices of an element T is uniformly bounded by a small number we
immediately get (c).

Recall that Ih denotes the nodal interpolator which is continuous in the H1-norm for
quadratic functions (cf. Definition 3.3). We define ũ ∈ V h

1 (Ωint) by

ũ := Ih(χu)

and obtain

|Hint
0,D w0|2H1(Ωint)

≤ |ũ|2H1(Ωint)
= |Ih(χu)|2H1(Ωint)

= |Ih(χu)|2H1(Ωint,η)

�
∫

Ωint,η

∣∣∇(
χ(x) u(x)

)∣∣2 dx

�
∫

Ωint,η

|∇χ(x)|2 |u(x)|2 + |χ(x)|2 |∇u(x)|2 dx

≤ ‖∇χ‖2
L∞(Ωint)

‖u‖2
L2(Ωint,η) + |u|2H1(Ωint,η)

�
∑
j∈J

{ 1
η2
‖u‖2

L2(ωj)
+ |u|2H1(ωj)

}
.
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By Friedrichs’ inequality (see, e. g., [87, Corollary A.15] or [69]), we have that

1
η2
‖u‖2

L2(ωj)
� |u|2H1(ωj)

+
1
η
‖u‖2

L2(∂ωj∩Γ0) .

Finally, by a finite summation argument and the fact that H0 ≥ η we get

|Hint
0,D w0|2H1(Ωint)

� |u|2Ωint
+

1
η
‖u‖2

L2(Γ0)

� H0

η

{
|w0|2H1/2(Γ0)

+
1

H0
‖w0‖2

L2(Γ0)

}
� H0

η

{
〈Sint

0 w0, w0〉+
1

H0
‖w0‖2

L2(Γ0)

}
,

since u|Γ0 = w0.

Part (iii): If ΓD\Γ0 touches Γ0, some of the patches ωj own a vertex (in two dimensions) or
an edge (in three dimensions) that belongs to ΓD ∩Γ0 and we cannot use the cutoff function
χ anymore. Instead, we use the estimates of Lemma 3.13 which contribute a logarithmic
factor. Define for each j ∈ J

ũ|ωj := argmin{v ∈ V h
1 (ωj) : v|ΓD

= 0, v|∂ωj,h\ΓD
= u} .

Apparently, ũ|Γ0 = w0, and thus, we obtain

|Hint
0,D w0|2H1(Ωint)

�
∑
j∈J

|ũ|2H1(ωj)

�
∑
j∈J

(
1 + log

(η

h

))2 {
|u|2H1(ωj)

+
1
η
‖u‖2

L2(∂ωj∩Γ0)

}
�

(
1 + log

(η

h

))2 H0

η

{
〈Sint

0 w0, w0〉+
1

H0
‖w0‖2

L2(Γ0)

}
,

where the estimate in the second line can be obtained by Lemma 3.13 (see also the proof of
Lemma 3.16) and once again Friedrichs’ inequality.

Remark 3.12. First, in Definition 3.2 and in the proof of Lemma 3.11 we have implicitly
assumed that the triangulations Th(Ωi) are conforming with the patches ωj , which should be
in fact coarse elements. This may result in many requirements on the mesh which might be
difficult to fulfill. One way out are recent results on substructuring and overlapping methods
assuming less regular subdomain boundaries, see [22, 47]. Note further, that Lemma 3.11 is
a non-constructive result on extensions. For the construction of explicit extensions we refer
to the works by Nepomnyaschikh et. al. [39, 65, 67, 68].

We are now ready to tackle the proof of Lemma 3.12.

3.3.6 Proof of Lemma 3.12

Our goal is to provide the stability estimate

|PD(w + zw)|2S ≤ C (1 + log(H/h))2 |w|2S ∀w ∈ (ker S)⊥ ,
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with the unique zw ∈ ker S from Lemma 3.9. We give the proof in three dimensions. The
two-dimensional case is in fact simpler and can be derived from the following proof in a
straight forward manner.

First, recall that w ∈ W =
∏

i∈I Wi. We write w = w̃ + Π0w where Π0 w is the projection
that sets all components of w to zero except for its component w0 corresponding to Γ0, thus
w̃0 = 0 and w̃i = wi for i 6= 0. Since the mapping w 7→ zw is linear (see Lemma 3.9), we get

|PD(w + zw)|2S � |PD(w̃ + z ew)|2S + |PD(Π0 w + z(Π0 w))|2S . (3.45)

If we have no unbounded domain in our formulation the second term has of course to be
dropped. By Lemma 3.3, we have PD = I − ED. This yields

|PD(w + zw)|2S � |w̃|2S + |ED w̃|2S + |PD z ew|2S + |PD(Π0 w + z(Π0 w))|2S . (3.46)

We treat above terms separately:

Claim 1: |ED w̃|2S � (1 + log(H/h))2|w̃|2S , for all w̃ ∈ (ker S)⊥ with w̃0 = 0.

Claim 2: |PD z ew|2S � (1 + log(H/h))2|w̃|2S , for all w̃ ∈ (ker S)⊥ with w̃0 = 0.

Claim 3: |PD(Π0w + zΠ0w)|2S � γh({Ωi}, ΓD, Γ0) (1 + log(H/h))2 |w0|2S0,h
.

Claim 4: |PD(Π0w + zΠ0w)|2S � max
F∈F0

H0
HF

(1 + log(H/h))2|w0|2S0,h
, even if the assumption

α0 ≤ αi does not hold.

Estimate (3.46) and Claim 1–4 imply the desired estimates of Lemma 3.12, i. e.,

|PD(w + zw)|2S � γh({Ωi}, ΓD, Γ0) (1 + log(H/h))2 |w|2S ,

|PD(w + zw)|2S � max
F∈F0

H0

HF
(1 + log(H/h))2|w|2S ,

for all w ∈ (ker S)⊥. In the following, we give the proofs of Claim 1–4.

Claim 1: We prove

|ED w̃|2S � (1 + log(H/h))2|w̃|2S for all w̃ ∈ (ker S)⊥ with w̃0 = 0 .

Since w̃0 = 0, we are in the situation of standard FETI proof, provided by Klawonn and
Widlund [49, 87]. In the following we display the whole proof, extended to the BEM case
(cf. Langer and Steinbach [58, 59]) and also to the all-floating formulation.

From the definition of ED we know in particular that ED w̃ satisfies the homogeneous
Dirichlet boundary conditions. In the following, we use the notation VI

i , EI
i and FI

i for the
set of vertices, edges and faces on the interface Γi ∩ΓI , respectively. The sub- or superscript
I stands for interface. Moreover, we denote the sets of vertices, edges and faces on the
Dirichlet boundary Γi ∩ ΓD by VD

i , ED
i and FD

i , respectively, and the set of non-coupling
faces on the Neumann boundary by FN

i . Hence, e. g., Fi = FI
i ∪ FN

i ∪ FD
i . Finally, we use

the same notation also for global sets: The set VI denotes the set of all subdomain vertices
on the interface, ED the set of all Dirichlet edges, and so forth.
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Using the partition of unity provided in Definition 3.3, we obtain that for any i ∈ I,

|(ED w̃)i|2Si,h
≤

∣∣∣ ∑
V ∈VI

i

E∈EI
i

F∈FI
i

∑
j∈NV/E/F

Ih(δ†j θV/E/F w̃j)
∣∣∣2
Si,h

+
∣∣∣ ∑

F∈FN
i

Ih(θF w̃i)
∣∣∣2
Si,h

. (3.47)

We apply Lemma 3.16, part (i) and observe that the cardinality of NV/E/F is small, which
justifies the use of the Cauchy-Schwarz inequality. We can obtain

|(ED w̃)i|2Si,h
�

∑
V ∈VI

i

E∈EI
i

F∈FI
i

∑
j∈NV/E/F

(
δ†j |V/E/F

)2
αi︸ ︷︷ ︸

≤min(αi,αj)

∣∣∣Ih(θV/E/F w̃j)
∣∣∣2
H

1/2
00 (ω

(i)
V/E/F

)
. (3.48)

In the last step, we have used that δ†j is constant on a vertex, edge or face. Thus, we have been

able to apply Lemma 3.2. By Lemma 3.13, we can bound the H
1/2
00 -norm of Ih(θV/E/F w̃j)

on the patches ω
(i)
V/E/F from above in the following way.

• For j = 0, we have w̃j = 0 and there is nothing to estimate.

• If j ∈ Ifloat we obtain by Lemma 3.13, (i) and (ii) that

|Ih(θV/E/F w̃j)|2
H

1/2
00 (ω

(i)
V/E/F

)
� (1 + log(HF /hi))2 ‖w̃j‖2

H1/2(F )

� (1 + log(HF /hi))2 |w̃j |2H1/2(F )
,

where F ∈ Fj and E ∈ Ej are chosen such that E ⊂ ∂F , and that V is one of the
endpoints of E. In the last step we have used that the fact that wj ∈ (ker Sj)> implies∫
Γj

wj(x) dsx = 0, and applied Poincaré’s inequality on the domain Ωj , which states
that

1
Hj
‖u‖2

L2(Ωj)
� |u|2H1(Ωj)

+
1

Hd
j

( ∫
Γj

u(x) dsx

)2
∀u ∈ H1(Ωj) ,

cf. [87, Lemmas A.13, A.17 and A.18]; see also Definition 3.5 for our definition of the
‖ · ‖H1/2(F )-norm.

• If Ωj is non-floating, we set

wj :=
1
|Γj |

∫
Γj

w̃j(x) dsx

(which implies
∫
Γj

w̃j(x)− wj dsx = 0), and Lemma 3.13, (i)–(v) yields

|Ih(θV/E/F w̃j)|2
H

1/2
00 (ω

(i)
V/E/F

)

� |Ih(θV/E/F (w̃j − wj)) |2
H

1/2
00 (ω

(i)
V/E/F

)
+ |wj |2 |Ih(θV/E/F )|2

H
1/2
00 (ω

(i)
V/E/F

)

� (1 + log(HF /hi))2 ‖w̃j − wj‖2
H1/2(F )

+ (1 + log(HF /hi))HF |wj |2 ,

� (1 + log(HF /hi))2 |w̃j |2H1/2(F )
+ (1 + log(HF /hi))

1
HF

‖w̃j‖2
L2(Γj)

.

(3.49)
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In the last step we have used Poincaré’s inequality and the Cauchy-Schwarz inequality,
which shows that

|wj |2 ≤ 1/|Γj | ‖w̃j‖2
L2(Γj)

' H−2
F ‖w̃j‖2

L2(Γj)
.

Since Ωj touches the Dirichlet boundary ΓD, we can bound the L2-term on the right
hand side from above using the discrete Poincaré-Friedrichs inequality (Lemma 3.14),
which contributes another logarithmic factor and leads to the overall bound

|Ih(θV/E/F w̃j)|2
H

1/2
00 (ω

(i)
V/E/F

)
� (1 + log(H/h))2 |w̃j |2H1/2(F )

.

Knowing that HF /hi ≤ H/h (cf. formula (2.29)), we have

|Ih(θV/E/F w̃j)|2
H

1/2
00 (ω

(i)
V/E/F

)
� (1 + log(H/h))2 |w̃j |2H1/2(F )

∀j ∈ NV/E/F . (3.50)

The second term in (3.47) involving the contributions on the Neumann boundary is treated
analogously.

Combining estimates (3.48) and (3.50), and observing that the number of faces of Ωj is a
small for j 6= 0, we obtain by Lemma 3.16 part (ii) that∑

i∈I
|(ED w̃)i|2Si,h

� (1 + log(H/h))2
∑

j∈I\{0}

∑
F∈FI

j ∪FN
j

αj |w̃j |2H1/2(F )

� (1 + log(H/h))2
∑

j∈I\{0}

|w̃j |2Sj,h

� (1 + log(H/h))2 |w̃|2S ,

since w̃0 = 0. This finishes the proof of Claim 1.

Claim 2: We prove

|PD z ew|2S � (1 + log(H/h))2|w̃|2S for all w̃ ∈ (ker S)⊥ with w̃0 = 0 .

Also in this situation, we can basically use the techniques described in [49, 87] taking into
account that w̃0 = 0, and modify some of the arguments for the all-floating formulation.

For Q = M−1, we see from Corollary 3.6 and from Lemma 3.9 that

|PD z ew|2S = ‖B z ew‖2
Q ≤ ‖B w̃‖2

Q = |PD w̃|2S � |w̃|2S + |ED w̃|2S .

Claim 1 immediately yields

|PD z ew|2S � (1 + log(H/h))2 |w|2S .
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For the diagonal choice of Q given in Section 3.3.1, we have

|PD z ew|2S =
∑
i∈I

∣∣∣∣ ∑
V ∈VI

i

E∈EI
i

F∈FI
i

∑
j∈NV/E/F

αγ
i∑

k∈NV/E/F

αγ
k

Ih
(
θV/E/F (z ew,i − z ew,j)

)
+

+
∑

V ∈VD
i

E∈ED
i

F∈FD
i

Ih
(
θV/E/F z ew,i

)∣∣∣∣2
Si,h

.

Subce Ω0 is non-floating, the 0-component of z ew vanishes. Therefore we can bound above
expression by∑

i∈I

{ ∑
V ∈VI

i

E∈EI
i

F∈FI
i

∑
j∈NV/E/F

min(αi, αj) |Ih
(
θV/E/F (z ew,i − z ew,j)

)
|2
H

1/2
00 (ω

(i)
V/E/F

)
+

+
∑

V ∈VD
i

E∈ED
i

F∈FD
i

|Ih
(
θV/E/F z ew,i

)
|2
H

1/2
00 (ω

(i)
V/E/F

)

}
,

where we have used Lemma 3.16, part (i) and the Cauchy-Schwarz inequality. For the
standard formulation, all the Dirichlet terms in the second sum vanish, since Γi ∩ ΓD 6= ∅
implies that Ωi is non-floating and thus z ew,i = 0.

• Using Lemma 3.13, (iii), the contribution from a face F = Fij on the interface can be
bounded by

C min(αi, αj)
(
1 + log

(HF

hi

))
HF |z ew,i − z ew,j |2 .

The difference z ew,i − z ew,j is now interpreted as the component of B w ew corresponding
to µx,ij with x being a node on F . Since there are O((HF /hi)2) such nodes and
Q[µx,ij ] = min(αi, αj)(1 + log(HF /hi))h2

i /HF , above term is equivalent to∑
x∈Fij∩ΓI,h

Q[µx,ij ] 〈B z ew, λx,ij〉2 .

• Lemma 3.13, (iv) yields that contribution from an edge E = Eij on the interface can
be bounded by

C min(αi, αj) HE |z ew,i − z ew,j |2 (3.51)

Assume first, that Ωi and Ωj are connected by a Lagrange multiplier. Then the
difference can be read again as any component of B z ew corresponding to some µx,ij
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with the node x lying on E. Since there are O(HE/hi) such nodes on the edge and
Q[µx,ij ] = min(αi, αj)hi, above expression is equivalent to∑

x∈Eij∩ΓI,h

Q[µx,ij ] 〈B z ew, λx,ij〉2 .

If we have non-redundant Lagrange multipliers, and Ωi and Ωj are not directly con-
nected, but both connected to the subdomain Ωk with the locally largest coefficient,
the edge contribution (3.51) is bounded by

C
{

min(αi, αk) HE |z ew,i − z ew,k|2 + min(αk, αj) HE |z ew,k − z ew,j |2
}

,

and we can proceed as before, since E = Eik = Ekj .

• Interface vertex terms are treated similarly to the edge terms.

For the all-floating formulation we additionally have contributions from Γi ∩ ΓD for i 6= 0:

• The contribution from a face F ∈ FD
i can be bounded by

C αi (1 + log(HF /hi))HF |z ew,i|2 .

We observe that z ew,i equals each component of B z ew corresponding to µx,i with the
node x lying on the face F . Since there are O((HF /hi)2) such nodes on the face and
Q[µx,i] = αi(1 + log(HF /hi))h2

i /HF , above expression is equivalent to∑
x∈F∩Γi,h

Q[µx,i]〈B z ew, λx,i〉2 .

• Edge and vertex terms on the Dirichlet boundary are treated similarly, and we obtain
that they can be bounded by∑

x∈E∩Γi,h

Q[µx,i]〈B z ew, λx,i〉2 , Q[µV,i]〈B z ew, λV,i〉2 ,

respectively (see the definition of Q, page 36).

All in all, we have shown that for both formulations, |PD z ew|2S � ‖B z ew‖2
Q and due to

Lemma 3.9,
‖B z ew‖2

Q ≤ ‖B w̃‖2
Q .

Now, we group the contributions of ‖B w̃‖2
Q to faces, edges and vertices on subdomain

interfaces and on the Dirichlet boundary. We observe the following:

• A subdomain face F = Fij contributes

min(αi, αj) (1 + log(HF /hi))
h2

i

HF

∑
x∈F∩Γi,h

(
w̃i(x)− w̃j(x)

)2

' min(αi, αj) (1 + log(HF /hi))
1

HF
‖w̃i − w̃j‖2

L2(F )

≤ (1 + log(HF /hi))
{

αi‖w̃i‖2
L2(F ) + αj‖w̃j‖2

L2(F ) .
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Since w̃0 = 0, we can use the same argument as in the proof of Claim 1 (see page 51)
and bound the L2-norms by the H1/2-semi-norms: If j = 0 there is nothing to estimate.
For j ∈ Ifloat we can use the Poincaré inequality, and for non-floating Ωj we use the
discrete Poincaré-Friedrichs inequality (Lemma 3.14). In each case, we obtain the
upper bound

(1 + log(H/h))2
{

αi|w̃i|2H1/2(F )
+ αj |w̃j |2H1/2(F )

}
.

• A subdomain edge E = Eij contributes

min(αi, αj) hi

∑
x∈E∩Γi,h

(
w̃i(x)− w̃j

)2 ' min(αi, αj) ‖w̃i − w̃j‖2
L2(E)

� αi ‖w̃i‖2
L2(E) + αj ‖w̃j‖2

L2(E)

� (1 + log(H/h))
{

αi ‖w̃i‖2
H1/2(Fi)

+ αj ‖w̃j‖2
H1/2(Fj)

}
,

where Fi ∈ Fi, Fj ∈ Fj such that E ∈ ∂Fi ∪ ∂Fj . Again, we have used Lemma 3.13,
(vi) and the fact that w̃0 = 0. With the same argument as for the face contributions
we arrive at the upper bound

(1 + log(H/h))2
{

αi|w̃i|2H1/2(Fi)
+ αj |w̃j |2H1/2(Fj)

}
.

• A subdomain vertex V = Vij contributes

min(αi, αj) hi

(
w̃i(V )− w̃j(V )

)2
,

which can be easily be bounded by the sum of the squared L2-norms of w̃i and w̃j on
adjacent edges and further estimated as above.

Additionally, we have to consider the contributions from the Lagrange parameters due to the
all-floating formulation. Note, that Assumption 3.2 holds, i. e., there are no such Lagrange
parameters acting on Γ0.

• For i 6= 0, a face F ∈ FD
i on the Dirichlet boundary contributes

αi

(
1 + log

(HF

hi

)) h2
i

HF

∑
x∈F∩Γi,h

|w̃i(x)|2 ' αi

(
1 + log

(HF

hi

)) 1
HF

‖w̃i‖2
L2(F )

and can be treated as above.

• For i 6= 0, the edge contribution from E ∈ ED
i ,

αi hi

∑
x∈E∩Γi,h

|w̃i(x)|2 � αi ‖w̃i‖2
L2(E) ,

and the vertex contribution from V ∈ VD
i ,

αi hi |w̃i(V )|2 � αi‖w̃i‖2
L2(E) ,

where V ∈ ∂E, can be estimated as above.

Putting all separate estimates together, we finally obtain by Lemma 3.16, part (ii) that

|PD z ew|2S � (1 + log(H/h))2 |w̃|2S ,

which finishes the proof of Claim 2.
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Claim 3 – Case Q = M−1: We prove

|PD(Π0 w + z(Π0 w))|2S � γh({Ωi}, ΓD, Γ0) (1 + log(H/h))2 |w0|2S0,h
,

for any w ∈ W , under the assumption that Q = M−1.

Again, Corollary 3.6 and Lemma 3.9 imply

|PD (Π0 w + z(Π0 w))|2S = ‖B (Π0 w + z(Π0 w))‖2
Q

= min
z∈ker S

‖B (Π0 w + z)‖2
Q = min

z∈ker S
|PD(Π0 w + z)|2S .

(3.52)

We bound this expression by constructing a special z̃ ∈ ker S. By definition, the function
Π0 w ∈ W has only one non-trivial component, namely w0. In the following, we use the
special extension

Hint
0,D w0 = argmin

{
|v|H1(Ωint) : v ∈ V h

1 (Ωint), v|Γ0 = w0, v|ΓD
= 0

}
.

By Lemma 3.11 and Lemma 2.3, we obtain

|Hint
0,D w0|2H1(Ωint)

≤ γh({Ωi}, Γ0, ΓD)
{
|Hint w0|2H1(Ωint)

+
1

H0
‖w0‖2

L2(Γ0)

}
≤ γh({Ωi}, Γ0, ΓD)

{
〈Sint

0 w0, w0〉+
1

H0
‖w0‖2

L2(Γ0)

}
� γh({Ωi}, Γ0, ΓD) 〈Sext

0,BEM w0, w0〉 .

(3.53)

We are now able to define z̃ ∈ ker S in the following way,

z̃i :=


1
|Ωi|

∫
Ωi

(Hint
0,D w0)(x) dx for i ∈ Ifloat ,

0 for i ∈ I \ Ifloat .
(3.54)

Continuing our estimate (3.52) we get

|PD(Π0 w + z(Π0 w))|2S ≤ |(PD(Π0 w + z̃))0|2S0,h
+

∑
i∈I\{0}

|(PD(Π0 w + z̃))i|2Si,h
. (3.55)

We denote the set of vertices, edges and faces on Γi ∩ ΓD by VD
i , ED

i and FD
i , respectively.

Since PD vanishes on the Neumann boundary (cf. Lemma 3.3) we only need to consider the
contributions from the subdomain interfaces and the Dirichlet boundary.

The first summand in (3.55) is treated as follows: By the same technique as in the proofs
of Claim 1 and Claim 2, and using Lemma 3.2, we can conclude that

|(PD(Π0 w + z̃))0|2S0,h

�
∣∣∣ ∑

V ∈VI
0

E∈EI
0

F∈FI
0

∑
j∈NV/E/F

Ih
(
δ†j θV/E/F (w0 − z̃j)

)
+

∑
V ∈VD

0

E∈ED
0

F∈FD
0

Ih(θV/E/F w0)
∣∣∣2
S0,h

�
∑

V ∈VI
0

E∈EI
0

F∈FI
0

∑
j∈NV/E/F

α0

(
δ†j

)2︸ ︷︷ ︸
≤α0

∣∣Ih
(
θV/E/F (w0 − z̃j)

)∣∣2
H

1/2
00 (ω

(0)
V/E/F

)
.
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We have used that w0 vanishes on Γ0∩ΓD due to Assumption 3.2, see page 25. For j ∈ Ifloat,
we obtain immediately∣∣Ih

(
θV/E/F (w0 − z̃j)

)∣∣2
H

1/2
00 (ω

(0)
V/E/F

)
� (1 + log(H0, j/h0))2 |Hint

0,D w0|2H1(Ωj)
.

If Ωj is non-floating, we have z̃j = 0. With the mean value

ẑj :=
1
|Ωj |

∫
Ωj

(Hint
0,D w0)(x) dx ,

we can use the same trick as in estimate (3.49) on page 51 and obtain that∣∣Ih
(
θV/E/F (w0 − z̃j)

)∣∣2
H

1/2
00 (ω

(0)
V/E/F

)

� (1 + log(H0, j/h0))2 |Hint
0,D w0 − ẑj |2H1(Ωj)

+ (1 + log(H0, j/h0))H0, j |ẑj |2

� (1 + log(H0, j/h0))2 |Hint
0,D w0|2H1(Ωj)

,

where in the last step, we have used the Cauchy-Schwarz inequality, the discrete Poincaré-
Friedrichs inequality, and the fact thatHint

0,D w0 satisfies the homogeneous Dirichlet boundary
conditions on Γ0 ∩ ΓD. Summarizing, we have shown

|(PD(Π0 w + z̃))0|2S0,h
�

∑
F0,j∈F0

(1 + log(H0, j/h0))2 α0 |Hint
0,D w0|2H1(Ωj)

� (1 + log(H/h))2 α0 |Hint
0,D w0|2H1(Ωint)

.

(3.56)

Now we treat the remaining summands on the right hand side of formula (3.55): For i ∈
I \ {0}, we obtain by the same technique described above that

|(PD(Π0 w + z̃))i|2Si,h
�

∑
V ∈VD

i

E∈ED
i

F∈FD
i

αi

∣∣Ih
(
θV/E/F z̃i

)∣∣2
H

1/2
00 (ω

(i)
V/E/F

)
+

+
∑

V ∈VI
i

E∈EI
i

F∈FI
i

∑
j∈NV/E/F

min(αi, αj)
∣∣Ih

(
θV/E/F (z̃i − (Π0 w + z̃)j)

)∣∣2
H

1/2
00 (ω

(i)
V/E/F

)
.

(3.57)

Using Lemma 3.13, the contributions on the Dirichlet boundary of non-floating subdomains
can be estimated from above by∣∣Ih

(
θF z̃i

)∣∣2
H

1/2
00 (F )

� (1 + log(H/h))Hi |z̃i|2 ,∣∣Ih
(
θV/E z̃i

)∣∣2
H

1/2
00 (ω

(i)
V/E

)
� Hi|z̃i|2 .

Due to the definition of z̃i, we obtain for i ∈ Ifloat,

Hi|z̃i|2 ≤ Hi

(
1
|Ωi|

∫
Ωi

(Hint
0,D w0)(x) dx

)2

� 1
H2

i

‖Hint
0,D w0‖2

L2(Ωi)
� (1 + log(H/h)) |Hint

0,D w0|2H1(Ωi)
,



58 3 ONE-LEVEL BETI METHODS

where we have used the Cauchy Schwarz inequality and the fact that the function Hint
0,D w0

satisfies the Dirichlet boundary conditions on Γi ∩ ΓD 6= ∅. If Γi ∩ ΓD is just a subdomain
edge, we still can apply a discrete Poincaré-Friedrichs inequality (cf. Lemma 3.14), which
contributes the logarithmic term in the estimate above. Eventually, by a finite summation
argument and the assumption that αi ≤ α0, we have∑

V ∈VD
i

E∈ED
i

F∈FD
i

αi

∣∣Ih
(
θV/E/F z̃i

)∣∣2
H

1/2
00 (ω

(i)
V/E/F

)
� (1 + log(H/h))2 α0 |Hint

0,D w0|2H1(Ω) .

Next, we treate the interface terms in estimate (3.57). For j = 0, the contributions on the
subdomain interfaces read

min(αi, α0)
∣∣Ih

(
θV/E/F (z̃i − (Π0 w − z̃)0)

)∣∣2
H

1/2
00 (ω

(i)
V/E/F

)

≤ α0

∣∣Ih
(
θV/E/F (z̃i − w0)

)∣∣2
H

1/2
00 (ω

(i)
V/E/F

)

where F is the face shared by Ω0 and Ωi. These terms have already been treated in the
estimates for the first summand in (3.55). For j 6= 0, we have

z̃i − (Π0 w + z̃)j = z̃i − z̃j .

Lemma 3.13 yields∣∣Ih
(
θV/E/F (z̃i − z̃j)

)∣∣2
H

1/2
00 (ω

(i)
V/E/F

)
� (1 + log(H/h))HF |z̃i − z̃j |2 . (3.58)

If both i and j are indices of non-floating subdomains, we can employ Lemma 3.15 and
bound the term HF |z̃i − z̃j |2 by a constant times the H1-norm of Hint

0,D w0 on a domain Uij

which satisfies Ωi ∩ Ωi ⊂ Uij ⊂ Ωint. If, e. g., i ∈ Ifloat and j 6∈ Ifloat (thus z̃j = 0), we can
insert ẑj := 1/|Ωj |

∫
Ωj

(Hint
0,D w0)(x) dx and obtain, by the same arguments and Lemma 3.14,

that

HF |z̃i|2 � HF |z̃i − ẑj |2 + HF |ẑj |2 � (1 + log(H/h)) |Hint
0,D w0|2H1(Uij)

holds. Since we have only a finite overlap of the domains Uij , we finally obtain the following
estimate for the remaining summands in formula (3.55),∑

i∈I\{0}

|(PD(Π0 w + z̃))i|2Si,h
� (1 + log(H/h))2 α0 |Hint

0,D w0|2H1(Ωint)
. (3.59)

Combining the estimate (3.53) on page 56 with (3.56) and (3.59), we obtain

|PD(Π0 w + z(Π0 w))|2S � γh({Ωi}, ΓD, Γ0) (1 + log(H/h))2 α0 〈Sext
0,BEM w0, w0〉 ,

which is the desired estimate of Claim 3 for the case that Q = M−1.
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Claim 3 – diagonal Q: We prove

|PD(Π0 w + z(Π0 w))|2S � γh({Ωi}, ΓD, Γ0) (1 + log(H/h))2 |w0|2S0,h
,

for any w ∈ W , under the assumption that Q is chosen diagonal according to Section 3.3.1.

First, we can use the coarse space element z̃i ∈ ker S defined in equation (3.54) and obtain
by a simple triangle inequality that

|PD(Π0 w + z(Π0 w)|2S ≤ 2
{
|PD(Π0 w + z̃)|2S + |PD(z̃ − z(Π0 w)|2S

}
.

The first term can be bounded using the proof of Claim 3 for the case Q = M−1. For the
second term, we observe that z̃ − z(Π0 w), as an element in ker S, is constant on the floating
subdomains. Using the same arguments as in the proofs of Claim 2, and Lemma 3.9, we get

|PD(z̃ − z(Π0 w))|2S � ‖B (z̃ − z(Π0 w))‖2
Q

� ‖B (Π0 w + z̃)‖2
Q + ‖B (Π0 w + z(Π0 w))‖2

Q

= ‖B (Π0 w + z̃)‖2
Q + min

z∈ker S
‖B (Π0 w + z)‖2

Q

� ‖B (Π0 w + z̃)‖2
Q

The last term splits into contributions corresponding to subdomain vertices, edges and faces
on ΓI and ΓD. We distinguish the following cases:

• The contribution from a face F shared by Ω0 and Ωi is treated as follows,∑
x∈F∩Γi,h

min(α0, αi) (1 + log(HF /h0))
h2

0

HF
|z̃i − w0(x)|2

� α0 (1 + log(H/h))
1

HF
‖z̃i − w0‖2

L2(F ) .

If i ∈ Ifloat, the Poincaré inequality yields the overall bound

α0 (1 + log(H/h)) |Hint
0,D w0|2H1(Ωi)

,

whereas for i 6∈ Ifloat, z̃i = 0. Thus, Lemma 3.14 yields the bound

α0 (1 + log(H/h))2 |Hint
0,D w0|2H1(Ωi)

.

• Next, we treat the contribution from a face F shared by Ωi and Ωj , with i, j 6= 0:∑
x∈F∩Γi,h

min(αi, αj) (1 + log(Hij/hi))
h2

i

HF
|z̃i − z̃j |2

� α0 (1 + log(HF /hi))HF |z̃i − z̃j |2

� α0 (1 + log(H/h))2 |Hint
0,D w0|2H1(Uij)

,

where we have used the fact that the face contains O((Hij/hi)2) nodes, and the same
argumentation as in the paragraph after equation (3.58), page 58.
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• An edge E shared by Ω0 and Ωi contributes∑
x∈E∩Γi,h

min(α0, αi) h0 |z̃i − w0(x)|2 � α0 ‖z̃i − w0‖2
L2(E)

� α0 (1 + log(H/h))2 |Hint
0,D w0|2H1(Ωi)

.

• An edge E shared by Ωi and Ωj , with i, j 6= 0 contributes α0 HE |z̃i − z̃j |2, which can
be treated analogously as before.

• A vertex V ∈ Γ0,i contributes

α0 hi |z̃i − w0(V )|2 � α0 ‖z̃i − w0‖2
L2(E)

and can be treated analogously to the edge case.

• The contribution from a vertex V ∈ Γij with i, j 6= 0 reads

α0 hi |z̃i − z̃j |2 ≤ α0 HE |z̃i − z̃j |2

which is again analogue to the edge case.

• In the all-floating formulation, faces F , edges E and vertices V on Γj ∩ ΓD with j 6= 0
contribute

αj (1 + log(HF /hj))HF |z̃j |2 ,

αj HE |z̃j |2 ,

αj hi|z̃j |2 ,

respectively, see also Assumption 3.2. Using the same arguments as before, each of the
three terms can be bounded by

αj (1 + log(H/h))2 |Hint
0,D w0|2H1(Ωj)

.

Putting the separate estimates together, we obtain by a finite summation argument that

|PD(z̃ − z(Π0 w))|2S � ‖B (Π0 w + z̃)‖2
Q � (1 + log(H/h))2 α0 |Hint

0,D w0|2H1(Ωint)
.

From this point on, we can proceed exactly as in the proof of Claim 3 for the case Q = M−1,
and get the desired result of Claim 3 for the diagonal choice of Q.

Claim 4: We prove

|PD(Π0w + zΠ0w)|2S � max
F∈F0

H0

HF
(1 + log(H/h))2|w0|2S0,h

,

for any w ∈ W , even if the assumption α0 ≤ αi does not hold. In the case of Q = M−1 we
know from equation (3.52 ) that

|PD(Π0w + zΠ0w)|2S = min
z∈ker S

|PD(Π0w + z)|2S .
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Again, we choose a special such z, namely z̃ ≡ 0. Following the line of the proof of Claim 3,
we obtain

|PD(Π0w + zΠ0w)|2S | ≤ |PD Π0w|2S

�
∑

F∈F0

(1 + log(H/h))2 α0

{
|w0|2H1/2(F )

+
1

HF
‖w0‖2

L2(F )

}
� (1 + log(H/h))2 max

F∈F0

H0

HF
α0

{
|w0|2Sint

0
+

1
H0

‖w0‖2
L2(Γ0)

}
� (1 + log(H/h))2 max

F∈F0

H0

HF
|w0|2S0,h

,

(3.60)

see also the introduction, page 5. A careful inspection reveals that we do not need the
assumption α0 ≥ αi.

For the diagonal choice of Q, the triangle inequality yields

|PD(Π0w + zΠ0w)|2S | ≤ |PD Π0w|2S + |PD zΠ0w|2S .

We have already estimated the first term in (3.60). For the second term, we follow the line
of the proof of Claim 2. Here, Assumption 3.2 (page 25) becomes again important. Finally,
we obtain

|PD zΠ0w|2S �
∑

F∈F0

(1 + log(H/h))2 α0

{
|w0|2H1/2(F )

+
1

HF
‖w0‖2

L2(F )} ,

which can be absorbed again in estimate (3.60).

This finishes the proof of Claim 4.

Remark 3.13. In Claim 4, we have not made use of the extension indicator. Hence, we can
drop the additional assumptions which we need for Lemma 3.11.

Remark 3.14. The estimate of Claim 4 gets worse if the ratio maxF∈F0 H0/HF increases.
Slightly modifying the proof of Claim 3, one can show the sub-optimal bound

C (1 + log(H/h))2 max
i∈I

αi

α0

of the total condition number, also without using the extension indicator.

Since we have proved Claim 1–4 this finishes also the proof of Lemma 3.12, which means we
have completed our argumentation to show the main result of this section, i. e., Theorem 3.1.

We see, that the analysis of one-level BETI methods for unbounded domains is quite
involved, and the conditions on the geometry and the coefficients which lead to the optimal
bounds seem rather artificial. The situation is completely different for dual-primal BETI
methods which we discuss in the Section 4.
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Figure 11: Sketch of the geometries for Table 2 (left) and Table 3 (right).

3.4 Numerical results

In this subsection, we show some results on one-level BETI methods for two-dimensional
unbounded domains. Here, we restrict ourselves to the standard formulation with redundant
Lagrange multipliers, and the cheap, diagonal choice of the operator Q, see Section 3.3.1 In
particular we study the three cases that appear in Lemma 3.11. In Table 1–3, we display
the number of PCG iterations for various ratios H/h and H0/HF or H0/η.

H0
Hi

H
h = 2 4 8 16 32 64

3 7 8 10 11 12 13
6 9 9 11 13 15 17

12 9 10 12 14 16 18
24 9 10 12 15 17 20
48 9 11 13 15 18 –

Table 1: Number of PCG iterations of the one-level BETI method for a unit square without
any interior boundary conditions. Moving right means h-refinement, moving down means
increasing the number of subdomains.

In most of the examples the estimates that we worked out are not or only partially reflected.
Actually, the condition numbers are much better than expected. This may have two reasons:

• The estimates could be not sharp. Note, that there could, e. g., be a more clever way
of choosing z̃, see the proofs of Claim 3 and 4.

• The examples we computed are still in the preasymptotic range.
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H0
η = 6

H0
Hi

H
h = 2 4 8 16 32 64

6 9 11 13 14 16 19
12 11 12 14 17 21 24
24 11 13 15 18 21 25
48 12 14 16 19 23 –
96 13 15 17 20 – –

H0
η = 24

H0
Hi

H
h = 2 4 8 16 32

24 12 14 16 18 22
48 14 16 21 23 27
96 15 19 22 25 –

192 17 21 24 – –
H0
η = 96

H0
Hi

H
h = 2 4 8 16

96 17 22 28 32
192 24 29 34 –
384 27 30 – –

Table 2: Number of PCG iterations of the one-level BETI method for a unit square with
Dirichlet conditions on a “hole” (cf. Fig. 11, left) with distance η from Γ0. Moving right
means h-refinement, moving down means increasing the number of subdomains.

H0
η = 6

H0
Hi

H
h = 2 4 8 16 32 64

6 11 13 14 16 17 20
12 12 14 17 19 22 25
24 13 15 18 20 24 27
48 13 16 19 21 24 –
96 13 16 19 22 – –

H0
η = 24

H0
Hi

H
h = 2 4 8 16 32 64

6 14 16 19 22 25 27
12 16 20 24 27 31 –
24 17 21 26 29 – –

Table 3: Number of PCG iterations of the one-level BETI method for a unit square with
Dirichlet conditions on a square outline touching Γ0, see Fig. 11, right. Moving right means
h-refinement, moving down means increasing the number of subdomains.
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4 BETI-DP methods

Dual-primal FETI (FETI-DP) methods were first introduced by Farhat, Lesoinne, LeTallec,
Pierson and Rixen [30] and analyzed in two dimensions by Mandel and Tezaur [64]. Al-
gorithms for the three-dimensional case were contributed by Farhat, Lesoinne and Pierson
[31], see also Pierson’s dissertation [73]. Finally, a rigorous analysis was given by Klawonn,
Widlund and Dryja [50]. See also the works by Brenner et al. [11, 12, 14] for sharp estimates.
A comprehensive description of the theory for FETI-DP methods can again be found in the
monograph by Toselli and Widlund [87].

The dual-primal BETI (BETI-DP) methods were first introduced by Langer, Pohoaţǎ and
Steinbach [57]. In this section, we give a full analysis on BETI-DP methods for the case of
unbounded domains.

4.1 BETI-DP formulations

For the sake of simplicity, we treat only the case of fully redundant Lagrange multipliers,
and without loss of generality we assume homogeneous Dirichlet boundary conditions, i. e.,
gD ≡ 0.

As in Section 3, we start from the minimization problem

min
uh∈V h

1,D(ΓS)

∑
i∈I

[1
2
〈Si,h Ai uh, Ai uh〉 − 〈fi,h, Ai uh〉

]
. (4.1)

We recall the definition of W := Πi∈IWi and Wi := V h
1,D(Γi), and consider the Steklov-

Poincaré operators Si,h : Wi → W ∗
i and S = diag (Si,h)i∈I : W → W ∗.

As in all dual-primal methods, we work with subspaces W̃ ⊂ W for which sufficiently
many constraints are enforced such that the block operator S is SPD on W̃ . Such spaces
are constructed as follows. We choose a primal space ŴΠ ⊂ V h

1,D(ΓS) and a dual subspace

W̃∆ ⊂ W̃ such that
W̃ = ŴΠ ⊕ W̃∆ .

Note, that for simplicity we identify continuous functions from V h
1 (ΓS) with the correspond-

ing ones in the product space W . We denote the i-th component of the product space W̃∆

by W̃∆, i. According to [50] and [57] we display three choices of the space W̃ :

Algorithm A. The primal subspace ŴΠ is spanned by the nodal vertex basis functions
θV ∈ V h

1,D(ΓS), where V ∈ VI , i. e., V runs over all the subdomain vertices on the interface.

The local subspace W̃∆, i is defined as the subspace of Wi with its elements vanishing on the
subdomain vertices, i. e.,

W̃∆, i := {wi ∈ Wi : wi(V ) = 0 ∀V ∈ VI
i } .

Thus, W̃ is the subspace of W of functions being continuous at the subdomain vertices.

Algorithm B. The primal subspace ŴΠ is spanned by the nodal vertex basis functions
θV ∈ V h

1,D(ΓS), V ∈ VI , and the cutoff functions θE, θF ∈ V h
1,D(ΓS), where E ∈ EI , F ∈ FI .
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The local subspace W̃∆, i is defined as the subspace of Wi where the values at the subdomain
vertices vanish, together with the averages

wi
E :=

1
|E|

∫
E

wi(x) dsx , wi
F :=

1
|F |

∫
F

wi(x) dsx ,

i. e.,

W̃∆, i := {wi ∈ Wi : wi(V ) = 0 ∀V ∈ VI
i , wi

E = 0 ∀E ∈ EI
i , wi

F = 0 ∀F ∈ FI
i } .

Thus, W̃ is the subspace of W of functions being continuous at the subdomain vertices and
with continuous edge and face averages.

Algorithm C. The primal subspace ŴΠ is spanned by the nodal vertex basis functions
θV ∈ V h

1,D(ΓS), V ∈ VI , and the cutoff functions θE ∈ V h
1,D(ΓS), where E ∈ EI . The local

subspace W̃∆, i is defined as the subspace of Wi where the values at the subdomain vertices
vanish, together with the edge averages, i. e.,

W̃∆, i := {wi ∈ Wi : wi(V ) = 0 ∀V ∈ VI
i , wi

E = 0 ∀E ∈ EI
i } .

Thus, W̃ is the subspace of W of functions being continuous at the subdomain vertices and
with continuous edge averages.

There are even more choices possible, see, e. g., [50, Algorithm D]. Note, that Algorithm A
works only well in two dimensions, see also [30, 64] for some numerical experiments on FETI-
DP. Its poor behavior in three dimensions relates to the fact that there is no more a discrete
Poincaré-Friedrichs inequality (cf. Lemma 3.14) for functions vanishing at single vertices, at
least not with a logarithmic factor.

We now formulate the BETI-DP algorithms. Depending on the choice of the space W̃∆,
we define the Schur complement S̃ : W̃∆ → (W̃∆)∗ by

S̃ := S∆ − S∆Π S−1
Π SΠ∆ ,

where the block operators S∆ : (W̃∆ → (W̃∆)∗, SΠ∆ : ŴΠ → (W̃∆)∗, S∆Π : W̃∆ → (ŴΠ)∗

and SΠ : ŴΠ → (ŴΠ)∗ satisfy the relations

〈S∆ v∆, w∆〉 = 〈S v∆, w∆〉 ∀v∆, w∆ ∈ W̃∆ ,

〈S∆Π v∆, wΠ〉 = 〈SΠ∆ wΠ, v∆〉 = 〈S v∆, wΠ〉 ∀v∆ ∈ W̃∆, ∀wΠ ∈ ŴΠ ,

〈SΠ vΠ, wΠ〉 = 〈S vΠ, wΠ〉 ∀vΠ, wΠ ∈ ŴΠ .

Note, that SΠ is SPD and S̃ fulfill the minimizing property

〈S̃ w∆, w∆〉 = min
wΠ∈cWΠ

〈S(w∆ + wΠ), w∆ + wΠ〉

Furthermore, we define the reduced right hand side

f̃ := f∆ − S∆Π S−1
Π fΠ ∈ (W̃∆)∗ ,
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where f∆, fΠ are the projections of f onto the corresponding subspaces. The continuity
constraints on the interface are incorporated using fully redundant Lagrange multipliers,
but–in contrast to one-level methods–only for the degrees of freedom in W̃∆. E. g., for
Algorithm A there are no Lagrange multipliers corresponding to subdomain vertices. We
denote the space of these Lagrange multipliers by U∆ and define the corresponding jump
operator B∆ : W̃∆ → U∗

∆ analogously to Section 3. With these definitions, we arrive at the
following minimization problem, which is equivalent to (4.1),

min
u∆ ∈ W̃∆

B∆ u∆ = 0

∑
i∈I

[1
2
〈S̃ u∆, u∆〉 − 〈f̃ , u∆〉

]
. (4.2)

Suppose we have the solution u∆. Then the overall solution u ∈ W̃ is given by u = u∆ + uΠ

with uΠ = S−1
Π (fΠ − SΠ∆u∆). Above minimization problem is equivalent to the following

saddle point problem: Find (u∆, λ) ∈ W̃∆ × U∆ such that(
S̃ B>

∆

B∆ 0

) (
u∆

λ

)
=

(
f̃
0

)
,

where the Lagrange parameters λ are unique up to kerB>
∆. As an important observation S̃ is

SPD on W̃∆, and so the inverse S̃−1 exists. We define the BETI-DP operator F : U∆ → U∗
∆

and the dual right hand side d ∈ U∗
∆ by

F := B∆S̃−1B>
∆ and d := B∆S̃−1f̃ .

Then above saddle point problem reduces to find λ ∈ U∆ such that

F λ = d .

Similar to Section 3.1.2 we see that F is SPD (and invariant) on the factor space V :=
(U∆)/ ker B>

∆
, and maps to V ′ := U∗

∆∩ range B∆. Thus λ can be obtained by a PCG iteration
on V . By the same arguments as on page 32 we do not have to care about any contributions
from kerB>

∆ in the Lagrange multipliers during the PCG algorithm. As a main difference to
the one-level method discussed in Section 3, no projection P appears, instead we need the
coarse solve S−1

Π in every PCG step.
Remark 4.1. Implementation details will be treated in a forthcoming paper. However, it
is clear that for assembling of the coarse matrix, one has to solve a local problem for each
primal unknown. This means in particular that in the case of uniform interior subdomain in
two-dimensions, one has to solve O(H0/HE) local problems on the exterior domain, where
the ratio H0/HE can grow arbitrarily large.

4.2 BETI-DP preconditioners and convergence analysis

Analogous to Section 3.2.3 we introduce a scaled jump operator BD,∆ :=
∑
i∈I

B
(i)
D,∆ : (W̃∆)∗ →

U∆ with B
(i)
D,∆ : (W̃∆, i)∗ → U∆ defined by its adjoint

[(B(i)
D,∆)>µx,jk](y) :=


δ†k for k < j = i, x = y,

−δ†k for i = k < j, x = y,
0 else,
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for the relevant x, y ∈ ΓI,h, with the weighted counting functions δ†k from Section 3.2.1.
According to [87, 50] the preconditioner M−1 : V ′ → V is defined by

M−1 = BD,∆ S∆ B>
D,∆

We observe, that S∆ = diag (S∆, i)i∈I with S∆, i : W̃∆, i → (W̃∆, i)∗. Consequently, the
application of S∆ is purely local and therefore the application of M−1 is easily parallelized.

In the sequel we elaborate a characterization of above preconditioner in terms of the
projection

P∆ := B>
D,∆B∆ ,

so that B>
∆M−1B∆ = P>

∆S∆P∆, similar to Section 3.2.

Lemma 4.1. Let the spaces ŴΠ and W̃∆ be defined according to Algorithm A, B or C. Then,
for all w∆ ∈ W̃∆,

(P∆w∆)i(x) =


∑

j∈Nx

δ†j(x)
(
w∆, i(x)− w∆, j(x)

)
for x ∈ Γi,h \ ΓD ,

w∆, i(x) = 0 for x ∈ Γi,h ∩ ΓD .

In particular, for a face F ∈ FN
i , we have (P∆ w∆)|F = 0. Furthermore, P∆w∆ ∈ W̃∆ and

B∆P∆ = B∆.

Proof. The proof is analogous to the proof of Lemma 3.5, see also [50]. The only difference
is that there are no Lagrange multipliers corresponding to subdomain vertices, however, the
values of w∆ vanish there anyway.

We can now state a stability estimate similar to Lemma 3.12.

Lemma 4.2. Let W̃∆ be defined according to Algorithm B or Algorithm C. Then, for all
w∆ ∈ W̃∆, we have

|P∆w∆|2S∆
≤ C (1 + log(H/h))2 |w∆|2eS ,

where C > 0 is independent of hi, Hi, αi and γ.

Proof. Essentially the following proof can be found in [50], only some of the arguments need
to be adapted to the unbounded domain Ω0. For the sake of completeness, we display the
whole proof for the three-dimensional case.

For an arbitrary w∆ ∈ W̃∆ we determine the minimizing function wΠ ∈ ŴΠ such that for
w = w∆ + wΠ ∈ W̃ , we have |w∆|eS = |w|S . According to [50], since wΠ is continuous across
the subdomain interfaces and vanishes on ΓD, we obtain by Lemma 4.1 that P∆w = P∆w∆.
Moreover, recall that P∆w ∈ W̃∆, and that S∆ is identical to S on the subspace W̃∆. With
these considerations it suffices to show that

|P∆w|2S ≤ C (1 + log(H/h))2 |w|2S . (4.3)
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First, Lemma 3.16, part (i) yields

|(P∆w)i|2Si,h
=

∣∣∣ ∑
E∈EI

i

F∈FI
i

∑
j∈NE/F

Ih
(
δ†j θE/F (wi − wj)

)∣∣∣2
Si,h

�
∑

E∈EI
i

F∈FI
i

∑
j∈NE/F

αi

(
δ†j

)2︸ ︷︷ ︸
≤min(αi,αj)

∣∣∣Ih
(
θE/F (wi − wj)

)∣∣∣2
H

1/2
00 (ω

(i)
E/F

)
.

(4.4)

Note, that in (4.4) neither contributions on the Dirichlet boundary nor on subdomain vertices
appear, because the function w vanishes there due to the definition of the space W̃ , for both
Algorithms B and C.

Face contributions from a face F = Fij can be estimated in the following way,

min(αi, αj)
∣∣∣Ih

(
θF (wi − wj)

)∣∣∣2
H

1/2
00 (F )

= min(αi, αj)
∣∣∣Ih

[
θF

(
(wi − wi

F )− (wj − wj
F ) + (wi

F − wj
F )

)]∣∣∣2
H

1/2
00 (F )

� (1 + log(H/h))2 min(αi, αj)
{
|wi − wj |2H1/2(F )

+

+
1

Hij

∥∥(wi − wi
F )− (wj − wj

F )
∥∥2

L2(F )
+ |wi

F − wj
F |2 ‖θF ‖2

H
1/2
00 (F )

}
.

(4.5)

For Algorithm B, wi
F = wj

F by the definition of the space W̃ , and we can estimate the last
expression from above by

C (1 + log(H/h))2
{

αi|wi|2H1/2(F )
+ αj |wj |2H1/2(F )

}
.

using the Poincaré inequality. For Algorithm C, Lemma 3.13, (iii) yields

‖θF ‖2

H
1/2
00 (F )

� (1 + log(HF /hi))HF . (4.6)

We choose an edge E ∈ EI with E ⊂ ∂F and obtain

|wi
F − wj

F |2 � |wi
F − wi

E |2 + |wj
F − wj

E |2

=
∣∣∣(wi − wi

F )
E
∣∣∣2 +

∣∣∣(wj − wj
F )

E
∣∣∣2

because wi
E = wj

E due to the definition of W̃ . Using the definition of the edge average, the
Cauchy-Schwarz inequality and Lemma 3.13, (vi), we obtain∣∣∣(wi − wi

F )
E
∣∣∣2 � 1

HE
‖wi − wi

F ‖2
L2(E)

� 1
HE

(1 + log(HF /hi))
{
|wi|2H1/2(F )

+
1

HF
‖wi − wi

F ‖2
L2(F )

}
.

Since HE ' HF , the factor 1/HE cancels with HF in (4.6), and using again the Poincaré
inequality we are finally able to bound the face contribution (4.5) from above by

C (1 + log(H/h))2
{

αi|wi|2H1/2(F )
+ αj |wj |2H1/2(F )

}
.
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Edge contributions of (4.4) from an edge E = Eij ∈ EI can be estimated by

min(αi, αj)
∥∥Ih

(
θE(wi − wj)

)∥∥2

H
1/2
00 (ω

(i)
E )

� min(αi, αj)‖wi − wj‖2
L2(E)

= min(αi, αj)‖(wi − wi
E)− (wj − wj

E)‖2
L2(E)

= min(αi, αj)
∥∥∥[

(wi − wi
Fi)− (wi − wi

Fi)
E]

+
[
(wj − wj

Fj )− (wj − wj
Fj )

E]∥∥∥2

L2(E)
,

where the faces Fi ∈ Fi and Fj ∈ Fj are chosen such that E ∈ ∂Fi∩∂Fj . In above deduction,
we have used Lemma 3.13, (vi) and the fact that for both Algorithms B and C, wi

E = wj
E .

By the Cauchy-Schwarz inequality, we see that∥∥∥(wi − wi
Fi)

E
∥∥∥2

L2(E)
� ‖wi − wi

Fi‖2
L2(E) .

Thus, we obtain

min(αi, αj)
∥∥Ih

(
θE(wi − wj)

)∥∥2

H
1/2
00 (ω

(i)
E )

� αi‖wi − wi
Fi‖2

L2(E) + αj‖wj − wj
Fj‖2

L2(E)

� (1 + log(Hij/hi))
{

αi

[
|wi|2H1/2(Fi)

+
1

HFi

‖wi − wi
Fi‖2

L2(Fi)

]
+

+ αj

[
|wj |2H1/2(Fj)

+
1

HFj

‖wj − wj
Fj‖2

L2(Fj)

]}
� (1 + log(H/h))

{
αi|wi|2H1/2(Fi)

+ αj |wj |2H1/2(Fj)

}
,

Eventually, by a finite summation argument, we obtain

|P∆w|2S � (1 + log(H/h))2
∑
i∈I

∑
F∈Fi

αi|wi|2H1/2(F )
.

For i 6= 0, we can use Lemma 3.16, part (iii) and bound
∑

F∈Fi
αi|wi|2H1/2(F )

from above

by C |wi|2Si,h
. For i = 0, we denote the discrete harmonic extension of w0 from Γ0 to Ωc

0

by Hint w0. Obviously, for F = F0,j , |w0|2H1/2(F )
� |Hint w0|2H1(Ωj)

. Thus, with a finite
summation argument, we have∑

F∈Fi

α0|w0|2H1/2(F )
� α0|Hint w0|2H1(Ωc

0) = α0 〈Sint
0,FEMw0, w0〉 � |w0|2S0,h

,

where the last step follows from Lemma 2.3. Finally, we arrive at the desired estimate (4.3),
which concludes the proof of Lemma 4.2.

Theorem 4.1. Let the spaces ŴΠ and W̃∆ be defined according to Algorithm B or C. Then
the BETI-DP preconditioner fulfills the following condition number estimate

κ(M−1F ) ≤ C (1 + log(H/h))2 ,
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to be understood in the factor space modulo ker B>
∆. The constant C is independent from Hi,

hi, αi and γ, and we point out that

H/h = max
i∈I

max
F∈FI

i

HF /hi .

Proof. For completeness, we display the proof which can be found in [50]. The only essential
point is the estimate stated in Lemma 4.2. Since S∆ is SPD on W̃∆, we can conclude that
M−1 is SPD on V ′. Thus its inverse M : V → V ′ exists. We show

〈M λ, λ〉 ≤ 〈F λ, λ〉 ≤ C (1 + log(H/h))2 〈M λ, λ〉 ∀λ ∈ V . (4.7)

Lower bound. Similar to the formula in the one-level method (cf. Lemma 3.8) the following
identity holds (see [50]),

〈F λ, λ〉 = sup
v∆∈fW∆

〈λ, B∆ v∆〉2

|v∆|2eS .

For an arbitrary µ ∈ V ′ there exists a w∆ ∈ W̃∆ with µ = B∆ w∆. Since B∆P∆ = B∆,
range (P∆) ⊂ W̃∆ (cf. Lemma 4.1) and |u∆|eS ≤ |u∆|S∆

for all u∆ ∈ W̃∆, we can conclude
that

〈F λ, λ〉 ≥ 〈λ, B∆P∆ w∆〉2

|P∆w∆|2eS ≥ 〈λ, B∆ w∆〉2

|P∆w∆|2S∆

=
〈λ, µ〉2

〈M−1µ, µ〉

For the choice µ = Mλ we arrive at the lower bound in (4.7).

Upper bound. Using Lemma 4.1 we have that for all λ ∈ V ,

〈F λ, λ〉 = sup
v∆∈fW∆

〈λ, B∆ v∆〉2

|v∆|2eS
� (1 + log(H/h))2 sup

v∆∈fW∆

〈λ, B∆ v∆〉2

|P∆v∆|2eS
� (1 + log(H/h))2 sup

v∆∈fW∆

〈λ, B∆ v∆〉2

〈M−1B∆ w∆, B∆ w∆〉

� (1 + log(H/h))2 sup
µ∈V ′

〈λ, µ〉2

〈M−1µ, µ〉
.

By Lemma A.2 we arrive at the upper bound in (4.7).

Remark 4.2. 1. Algorithm A gives the same condition number estimate in two dimensions,
also in presence of an unbounded domain. The proof of such an estimate requires no
new ideas and is therefore skipped.

2. Algorithm D in [50, 87] can be proved for the case of unbounded domains with the
same ideas as stated therein.

3. We see that in contrast to the one-level methods, the analysis for dual-primal methods
with unbounded domains is much simpler, because the L2-terms on the faces of the
exterior domain Ω0 can be eliminated at once. Moreover, we do not need any restric-
tions on the coefficients or on the boundary conditions. One could say that the coarse
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spaces WΠ of the dual-primal methods are more powerful than the coarse spaces Z of
the one-level methods.

4. It was shown in [11] that for bounded domains, the estimate in Theorem 4.1 is sharp
in two dimensions.

5 Conclusion

In this work we have given a detailed analysis of one-level BETI methods and BETI-DP
methods for Poisson problems in two- and three-dimensional unbounded domains. In partic-
ular, we have discussed several Lagrange multiplier formulation for one-level BETI methods,
such as non-redundant vs. redundant, and standard vs. all-floating formulation.

Our analysis of one-level methods for unbounded domains is essentially based on a relatively
tricky way of using the coarse space. With no assumptions on the coefficients the sub-optimal
bound

C max
i6=0

H0

Hi

(
1 + log

(Hi

hi

))2
. (5.1)

for the condition number of the preconditioned BETI-system can be shown. Here, H0 is
the diameter of the complement of the unbounded subdomain Ω0. This bound can be
improved, depending on the geometry of the problem, in particular on the location of interior
Dirichlet boundaries. However, for our proving technique, we need the additional assumption
that the coefficient α0 on Ω0, which is the unbounded exterior domain, is the largest one,
i. e., all interior coefficients αi must be smaller or equal to α0. This is exactly the case in
magnetostatic problems, where αi is the magnetic reluctivity which attains its largest value
in air or vacuum. The main tool in this case is an estimate which bounds the energy norm of
a restricted harmonic extension against a non-restricted one. Therefore, we have introduced
the extension indicator, γh({Ωi}, Γ0, ΓD), which is defined the maximal ratio of energy norms
of these extensions. For several specific geometrical configurations we can derive bounds for
the indicator γh({Ωi, Γ0, ΓD). In the the best case, where interior Dirichlet boundaries are
either not present or well-separated from Γ0, the quasi-optimal estimate of the condition
number of the preconditioned BETI-system holds, i. e.,

C max
i6=0

(
1 + log

(Hi

hi

))2
. (5.2)

Depending on the location of interior Dirichlet boundaries, bounds in between of (5.1) and
(5.2) can explicitly be derived.

Our numerical examples show that one-level BETI methods behave even better than one
would expect due to the theoretical bounds.

From the parallel scalability point of view, however, the application of the operators S0,h

and S−1
0,h is the bottleneck of the computation, since it usually disturbs the load balancing

in a parallel scheme. The algorithm can be accelerated by

• introducing a sub-group or processors that all together are responsible for the applica-
tion of S0,h and S−1

0,h,
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• using an inexact BETI scheme (cf. [54, 45, 51]) with similar sub-parallel precondition-
ers.

For parallel computations with data-sparse BEM matrices see, e. g., [15]. Furthermore, sev-
eral Schwarz-type preconditioners for boundary integral operators (which are parallelizable)
can, e. g., be found in [2, 41, 88].

For the BETI-DP method, we have proved the quasi-optimal bound

C max
i6=0

(
1 + log

(Hi

hi

))2
(5.3)

without any assumptions on the coefficients and just standard assumptions on the domain
decomposition. This is possible due to the larger coarse space of BETI-DP methods, which
is fairly different to the one of one-level methods. However, in BETI-DP methods the
assembly of the coarse grid matrix is more costly, since there might be a large number of
primal unknonws on the boundary Γ0, and for each of these unknowns one has to solve a
local problem on Ω0 to get the corresponding coarse matrix entry; see also Remark 4.1. For
the rest of the algorithm, one can apply the same strategy as above to speed up the local
operations on Ω0.
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A Auxiliary results

The following lemma is a well-known energy result on Galerkin projections

Lemma A.1. Let Vh ⊂ V be Hilbert spaces and let a : V × V → R be a bounded, symmetric
positive definite bilinear form. For some f ∈ V ∗ we define u ∈ V and uh ∈ Vh by

a(u, v) = 〈f, v〉 ∀v ∈ V ,

a(uh, vh) = 〈f, vh〉 ∀vh ∈ Vh .

Then
a(uh, uh) ≤ a(u, u) .

Proof. We define the energy functional

J(v) := 1
2a(v, v)− 〈f, v〉 .
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One can easily show that

u = argmin
v∈V

J(v) , J(u) = −1
2a(u, u)

uh = argmin
vh∈Vh

J(vh) , J(uh) = −1
2a(uh, uh) .

Since Vh ⊂ V , we have J(u) ≤ J(uh) which implies that a(uh, uh) ≤ a(u, u).

The next lemma is a well-known result on self-adjoint operators

Lemma A.2. Let V be a separable Hilbert space and T : V → V ∗ be self-adjoint and positive
definite, in particular T−1 : V ∗ → V exists. Then

〈w, T−1 w〉 = sup
v∈V \{0}

〈w, v〉
〈T v, v〉

∀w ∈ V ∗ .

Proof. For simplicity, we give the proof for the finite dimensional case. In the other case, we
need to use the spectral theorem and work with an orthonormal basis. We identify V and
V ∗ with the space Rn×n and T with a matrix A, where we use the Euklidean scalar product
(·, ·) and the induced norm ‖ · ‖. First, as a well known fact, there exists an SPD matrix
A1/2 with its inverse A−1/2 such that A = A1/2A1/2 and A−1 = A−1/2A−1/2. Secondly, by
the Cauchy-Schwarz inequality one easily sees that

‖x‖ = sup
y∈Rn\{0}

(x, y)
‖y‖

∀x ∈ Rn .

Thus,

(w, A−1 w) = (A−1/2 w, A−1/2 w) = sup
u∈Rn\{0}

(A−1/2 w, u)2

‖u‖2

= sup
u∈Rn\{0}

(w, A−1/2 u)2

(A A−1/2 u, A−1/2 u)
= sup

v∈Rn\{0}

(w, v)2

(A v, v)
.

In the last step we have used that A−1/2 is bijective and substituted v for A−1/2u.

B List of notations

Vectors

|x| absolute value of x ∈ R

|v| Euclidean norm of the vector v in Rd

v · w Euclidean inner product in Rd
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Spaces

V ∗ dual space of a Banach space V

〈·, ·〉 duality product between a dual V ∗ and a Banach space V

L2(Ω) Hilbert space of Lebesgue-measurable functions v on the domain or
mannifold Ω where

∫
Ω |v|

2dx is bounded

H1(Ω) Sobolev space of functions in L2(Ω) whose weak derivative is in L2(Ω)

H1
0 (Ω) Sobolev space of functions in H1(Ω) with vanishing trace on ∂Ω

H1
loc(Ω

c) Sobolev space of distributions u ∈ D′(Ωc) such that u ∈ H1(BR ∩ Ωc)
for all open balls BR ⊃ Ω

H1/2(Γ) trace space of H1(Ω) functions where Γ = ∂Ω

H
1/2
D (Γ) subspace of H1/2(Γ) with homogeneous Dirichlet conditions on ΓD ⊂ Γ

H−1/2(Γ) dual of H1/2(Γ)

H
1/2
00 (Γ̃) space of functions on Γ̃ ⊂ Γ) whose extension by zero is in H1/2(Γ)

H
1/2
∗ (Γ) = {v ∈ H1/2(Γ) : 〈V −1 v, 1Γ〉 = 0}, where V is the (elliptic) single layer

potential

H
−1/2
∗ (Γ) = {w ∈ H−1/2(Γ) : 〈w, 1Γ〉 = 0}

U space of Lagrange multipliers, see pg. 22

V , V ′ spaces of admissible Lagrange increments, see pg. 27 and pg. 66

Ṽ ′ = V ′ ∩ range B

V h
1 (Ω) discrete space of piecewise linear functions on a triangulation Th of Ω

V h
1, D(Ω) subspace of V h

1 (Ω) with homogeneous Dirichlet boundary conditions on
ΓD ⊂ ∂Ω

V h
1 (Γ) discrete space of piecewise linear functions on a triangulation Th of the

mannifold Γ

V h
1, D(Γ) subspace of V h

1 (Γ) with homogeneous Dirichlet boundary conditions on
ΓD ⊂ Γ

V h
0 (Γ) discrete space of piecewise constant functions on a triangulation Th of

the mannifold Γ

W product space
∏
i∈I

Wi, see pg. 21

Wi discrete space of piecewise linear functions on Γi with or without ho-
mogeneous Dirichlet boundary condition, see pages 21 and 24
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W̃ subspace of W of partially continuous functions; W̃ = ŴΠ ⊕ W̃∆, see
Section 4.1

ŴΠ primal space in dual-primal formulation, see Section 4.1

Ŵ∆ dual space in dual-primal formulation, see Section 4.1

Operators

B FETI/BETI jump operator, see pg. 22

BDr scaled FETI/BETI jump operator for redundant Lagrange multipliers,
see pg. 30

BD,∆ scaled FETI/BETI-DP jump operator for redundant Lagrange multi-
pliers, see pg. 66

Bi FETI/BETI jump operator on subdomain Ωi, see pg. 22

B∆ FETI/BETI-DP jump operator, see pg. 66

Di hypersingular integral operator on Γi, see pg. 9;
or: FETI/BETI scaling operator, see pg. 29

D block-diagonal FETI/BETI scaling operator, see pg. 29

ED FETI/BETI averaging operator, ED = I − PD, see pg. 30

F FETI/BETI operator, F = B>S†B, see pg. 26

G FETI/BETI: G = B R, see pg. 26

Hint minimal discrete harmonic extension of a piecewise linear function w
from the boundary Γ0 to the domain Ωint, see Definition 3.1, pg. 36; or
to the domain Ωc

0, see pg. 69

Hint
0,D minimal discrete harmonic extension of a piecewise linear function w

from the boundary Γ0 to the domain Ωint, which meets the homogeneous
Dirichlet conditions on ΓD, see Definition 3.1, pg. 36

K, Ki double layer potential operator on domain Ω or subdomain Ωi

M−1 FETI/BETI preconditioner, see pages 29 and 30

P FETI/BETI projection operator, see pg. 27
P = I −QG (G>QG)−1G>

PD FETI/BETI projection operator, see pg. 30 for the non-redundant and
pg. 31 for the redundant case

Q FETI/BETI scaling operator, see pages 26 and 35

R FETI/BETI operator generating the kernel kerS, see pg. 25
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S = diag (Si,h)i∈I , block Steklov-Poincaré operator, see pg. 23

Sint, Sext interior and exterior Steklov-Poincaré operator, see pg. 11

Si Steklov-Poincaré operator on subdomain Ωi, see pg. 20

Si,h approximated coefficient-weighted Steklov-Poincaré operator on subdo-
main Ωi, see pg. 20, Si,h := αiS

int/ext
i,FEM/BEM

S̃ Schur complement in dual primal methods, see pg. 65

S∆, SΠ, SΠ∆ dual-primal related restrictions of S, see pg. 65

V , Vi single layer potential operator on domain Ω or on subdomain Ωi

Constants and scalars

c0 = inf
v∈H

1/2
∗ (Γ)

〈D v, v〉
〈V −1 v, v〉 , see pg. 10

cK , c
(i)
K contraction constant of a domain Ω or subdomain Ωi, see pg. 10

γh({Ωi}, Γ0, ΓD) the extension indicator, see Definition 3.1, pg. 36

H0 diameter of the (bounded) complement Ωc
0 of the unbounded subdomain

Ω0

Hi diameter of the subdomain Ωi for i 6= 0

hi minimal mesh size of the triangulation Th of Γi or Ωi

H/h short hand for the maximum of the local ratio of the largest face diam-
eter and minimal mesh size on one subdomain, see pg. 19

Domains and mannifolds

Γ generically a boundary or a mannifold

ΓD Dirichlet boundary

Γi boundary of the subdomain Ωi

ΓI interface of the domain decomposition, see pg. 18

ΓI skeleton of the domain decomposition, see pg. 18

ΓN Neumann boundary

E subdomain edge of the domain decomposition

Eij subdomain edge between domains Ωi and Ωj
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F subdomain face of the domain decomposition

Fij subdomain face between the domains Ωi and Ωj

Ω generically a domain

Ω0 0-th subdomain, which is an unbounded domain

Ωi i-th subdomain

V subdomain vertex of the domain decomposition

Vij subdomain vertex (crosspoint) between the subdomains Ωi and Ωj
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